R
↳Dependency Pair Analysis
PLUS(plus(X, Y), Z) -> PLUS(X, plus(Y, Z))
PLUS(plus(X, Y), Z) -> PLUS(Y, Z)
TIMES(X, s(Y)) -> PLUS(X, times(Y, X))
TIMES(X, s(Y)) -> TIMES(Y, X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Remaining
PLUS(plus(X, Y), Z) -> PLUS(Y, Z)
plus(plus(X, Y), Z) -> plus(X, plus(Y, Z))
times(X, s(Y)) -> plus(X, times(Y, X))
innermost
one new Dependency Pair is created:
PLUS(plus(X, Y), Z) -> PLUS(Y, Z)
PLUS(plus(X, plus(X'', Y'')), Z'') -> PLUS(plus(X'', Y''), Z'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Remaining Obligation(s)
PLUS(plus(X, plus(X'', Y'')), Z'') -> PLUS(plus(X'', Y''), Z'')
plus(plus(X, Y), Z) -> plus(X, plus(Y, Z))
times(X, s(Y)) -> plus(X, times(Y, X))
innermost
TIMES(X, s(Y)) -> TIMES(Y, X)
plus(plus(X, Y), Z) -> plus(X, plus(Y, Z))
times(X, s(Y)) -> plus(X, times(Y, X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Remaining Obligation(s)
PLUS(plus(X, plus(X'', Y'')), Z'') -> PLUS(plus(X'', Y''), Z'')
plus(plus(X, Y), Z) -> plus(X, plus(Y, Z))
times(X, s(Y)) -> plus(X, times(Y, X))
innermost
TIMES(X, s(Y)) -> TIMES(Y, X)
plus(plus(X, Y), Z) -> plus(X, plus(Y, Z))
times(X, s(Y)) -> plus(X, times(Y, X))
innermost