R
↳Dependency Pair Analysis
CONCAT(cons(U, V), Y) -> CONCAT(V, Y)
LESSLEAVES(cons(U, V), cons(W, Z)) -> LESSLEAVES(concat(U, V), concat(W, Z))
LESSLEAVES(cons(U, V), cons(W, Z)) -> CONCAT(U, V)
LESSLEAVES(cons(U, V), cons(W, Z)) -> CONCAT(W, Z)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
CONCAT(cons(U, V), Y) -> CONCAT(V, Y)
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
one new Dependency Pair is created:
CONCAT(cons(U, V), Y) -> CONCAT(V, Y)
CONCAT(cons(U, cons(U'', V'')), Y'') -> CONCAT(cons(U'', V''), Y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
CONCAT(cons(U, cons(U'', V'')), Y'') -> CONCAT(cons(U'', V''), Y'')
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
one new Dependency Pair is created:
CONCAT(cons(U, cons(U'', V'')), Y'') -> CONCAT(cons(U'', V''), Y'')
CONCAT(cons(U, cons(U'''', cons(U''''', V''''))), Y'''') -> CONCAT(cons(U'''', cons(U''''', V'''')), Y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Nar
CONCAT(cons(U, cons(U'''', cons(U''''', V''''))), Y'''') -> CONCAT(cons(U'''', cons(U''''', V'''')), Y'''')
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
CONCAT(cons(U, cons(U'''', cons(U''''', V''''))), Y'''') -> CONCAT(cons(U'''', cons(U''''', V'''')), Y'''')
POL(cons(x1, x2)) = 1 + x2 POL(CONCAT(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
LESSLEAVES(cons(U, V), cons(W, Z)) -> LESSLEAVES(concat(U, V), concat(W, Z))
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
four new Dependency Pairs are created:
LESSLEAVES(cons(U, V), cons(W, Z)) -> LESSLEAVES(concat(U, V), concat(W, Z))
LESSLEAVES(cons(leaf, V'), cons(W, Z)) -> LESSLEAVES(V', concat(W, Z))
LESSLEAVES(cons(cons(U'', V''), V0), cons(W, Z)) -> LESSLEAVES(cons(U'', concat(V'', V0)), concat(W, Z))
LESSLEAVES(cons(U, V), cons(leaf, Z')) -> LESSLEAVES(concat(U, V), Z')
LESSLEAVES(cons(U, V), cons(cons(U'', V''), Z')) -> LESSLEAVES(concat(U, V), cons(U'', concat(V'', Z')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Narrowing Transformation
LESSLEAVES(cons(U, V), cons(cons(U'', V''), Z')) -> LESSLEAVES(concat(U, V), cons(U'', concat(V'', Z')))
LESSLEAVES(cons(U, V), cons(leaf, Z')) -> LESSLEAVES(concat(U, V), Z')
LESSLEAVES(cons(cons(U'', V''), V0), cons(W, Z)) -> LESSLEAVES(cons(U'', concat(V'', V0)), concat(W, Z))
LESSLEAVES(cons(leaf, V'), cons(W, Z)) -> LESSLEAVES(V', concat(W, Z))
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
two new Dependency Pairs are created:
LESSLEAVES(cons(leaf, V'), cons(W, Z)) -> LESSLEAVES(V', concat(W, Z))
LESSLEAVES(cons(leaf, V'), cons(leaf, Z')) -> LESSLEAVES(V', Z')
LESSLEAVES(cons(leaf, V'), cons(cons(U', V''), Z')) -> LESSLEAVES(V', cons(U', concat(V'', Z')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
LESSLEAVES(cons(leaf, V'), cons(cons(U', V''), Z')) -> LESSLEAVES(V', cons(U', concat(V'', Z')))
LESSLEAVES(cons(leaf, V'), cons(leaf, Z')) -> LESSLEAVES(V', Z')
LESSLEAVES(cons(U, V), cons(leaf, Z')) -> LESSLEAVES(concat(U, V), Z')
LESSLEAVES(cons(cons(U'', V''), V0), cons(W, Z)) -> LESSLEAVES(cons(U'', concat(V'', V0)), concat(W, Z))
LESSLEAVES(cons(U, V), cons(cons(U'', V''), Z')) -> LESSLEAVES(concat(U, V), cons(U'', concat(V'', Z')))
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
four new Dependency Pairs are created:
LESSLEAVES(cons(cons(U'', V''), V0), cons(W, Z)) -> LESSLEAVES(cons(U'', concat(V'', V0)), concat(W, Z))
LESSLEAVES(cons(cons(U'', leaf), V0'), cons(W, Z)) -> LESSLEAVES(cons(U'', V0'), concat(W, Z))
LESSLEAVES(cons(cons(U'', cons(U', V')), V0'), cons(W, Z)) -> LESSLEAVES(cons(U'', cons(U', concat(V', V0'))), concat(W, Z))
LESSLEAVES(cons(cons(U'', V''), V0), cons(leaf, Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), Z')
LESSLEAVES(cons(cons(U'', V''), V0), cons(cons(U', V'), Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), cons(U', concat(V', Z')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Narrowing Transformation
LESSLEAVES(cons(cons(U'', V''), V0), cons(cons(U', V'), Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), cons(U', concat(V', Z')))
LESSLEAVES(cons(cons(U'', V''), V0), cons(leaf, Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), Z')
LESSLEAVES(cons(cons(U'', cons(U', V')), V0'), cons(W, Z)) -> LESSLEAVES(cons(U'', cons(U', concat(V', V0'))), concat(W, Z))
LESSLEAVES(cons(cons(U'', leaf), V0'), cons(W, Z)) -> LESSLEAVES(cons(U'', V0'), concat(W, Z))
LESSLEAVES(cons(leaf, V'), cons(leaf, Z')) -> LESSLEAVES(V', Z')
LESSLEAVES(cons(U, V), cons(cons(U'', V''), Z')) -> LESSLEAVES(concat(U, V), cons(U'', concat(V'', Z')))
LESSLEAVES(cons(U, V), cons(leaf, Z')) -> LESSLEAVES(concat(U, V), Z')
LESSLEAVES(cons(leaf, V'), cons(cons(U', V''), Z')) -> LESSLEAVES(V', cons(U', concat(V'', Z')))
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
two new Dependency Pairs are created:
LESSLEAVES(cons(U, V), cons(leaf, Z')) -> LESSLEAVES(concat(U, V), Z')
LESSLEAVES(cons(leaf, V'), cons(leaf, Z')) -> LESSLEAVES(V', Z')
LESSLEAVES(cons(cons(U'', V''), V0), cons(leaf, Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), Z')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Narrowing Transformation
LESSLEAVES(cons(cons(U'', V''), V0), cons(leaf, Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), Z')
LESSLEAVES(cons(leaf, V'), cons(leaf, Z')) -> LESSLEAVES(V', Z')
LESSLEAVES(cons(cons(U'', V''), V0), cons(leaf, Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), Z')
LESSLEAVES(cons(cons(U'', cons(U', V')), V0'), cons(W, Z)) -> LESSLEAVES(cons(U'', cons(U', concat(V', V0'))), concat(W, Z))
LESSLEAVES(cons(cons(U'', leaf), V0'), cons(W, Z)) -> LESSLEAVES(cons(U'', V0'), concat(W, Z))
LESSLEAVES(cons(leaf, V'), cons(cons(U', V''), Z')) -> LESSLEAVES(V', cons(U', concat(V'', Z')))
LESSLEAVES(cons(leaf, V'), cons(leaf, Z')) -> LESSLEAVES(V', Z')
LESSLEAVES(cons(U, V), cons(cons(U'', V''), Z')) -> LESSLEAVES(concat(U, V), cons(U'', concat(V'', Z')))
LESSLEAVES(cons(cons(U'', V''), V0), cons(cons(U', V'), Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), cons(U', concat(V', Z')))
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
four new Dependency Pairs are created:
LESSLEAVES(cons(U, V), cons(cons(U'', V''), Z')) -> LESSLEAVES(concat(U, V), cons(U'', concat(V'', Z')))
LESSLEAVES(cons(leaf, V'), cons(cons(U'', V''), Z')) -> LESSLEAVES(V', cons(U'', concat(V'', Z')))
LESSLEAVES(cons(cons(U''', V'''), V0), cons(cons(U'', V''), Z')) -> LESSLEAVES(cons(U''', concat(V''', V0)), cons(U'', concat(V'', Z')))
LESSLEAVES(cons(U, V), cons(cons(U'', leaf), Z'')) -> LESSLEAVES(concat(U, V), cons(U'', Z''))
LESSLEAVES(cons(U, V), cons(cons(U'', cons(U''', V''')), Z'')) -> LESSLEAVES(concat(U, V), cons(U'', cons(U''', concat(V''', Z''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Polynomial Ordering
LESSLEAVES(cons(U, V), cons(cons(U'', cons(U''', V''')), Z'')) -> LESSLEAVES(concat(U, V), cons(U'', cons(U''', concat(V''', Z''))))
LESSLEAVES(cons(U, V), cons(cons(U'', leaf), Z'')) -> LESSLEAVES(concat(U, V), cons(U'', Z''))
LESSLEAVES(cons(cons(U''', V'''), V0), cons(cons(U'', V''), Z')) -> LESSLEAVES(cons(U''', concat(V''', V0)), cons(U'', concat(V'', Z')))
LESSLEAVES(cons(leaf, V'), cons(cons(U'', V''), Z')) -> LESSLEAVES(V', cons(U'', concat(V'', Z')))
LESSLEAVES(cons(leaf, V'), cons(leaf, Z')) -> LESSLEAVES(V', Z')
LESSLEAVES(cons(cons(U'', V''), V0), cons(cons(U', V'), Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), cons(U', concat(V', Z')))
LESSLEAVES(cons(cons(U'', V''), V0), cons(leaf, Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), Z')
LESSLEAVES(cons(cons(U'', cons(U', V')), V0'), cons(W, Z)) -> LESSLEAVES(cons(U'', cons(U', concat(V', V0'))), concat(W, Z))
LESSLEAVES(cons(cons(U'', leaf), V0'), cons(W, Z)) -> LESSLEAVES(cons(U'', V0'), concat(W, Z))
LESSLEAVES(cons(leaf, V'), cons(cons(U', V''), Z')) -> LESSLEAVES(V', cons(U', concat(V'', Z')))
LESSLEAVES(cons(leaf, V'), cons(leaf, Z')) -> LESSLEAVES(V', Z')
LESSLEAVES(cons(cons(U'', V''), V0), cons(leaf, Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), Z')
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
LESSLEAVES(cons(U, V), cons(cons(U'', cons(U''', V''')), Z'')) -> LESSLEAVES(concat(U, V), cons(U'', cons(U''', concat(V''', Z''))))
LESSLEAVES(cons(U, V), cons(cons(U'', leaf), Z'')) -> LESSLEAVES(concat(U, V), cons(U'', Z''))
LESSLEAVES(cons(cons(U''', V'''), V0), cons(cons(U'', V''), Z')) -> LESSLEAVES(cons(U''', concat(V''', V0)), cons(U'', concat(V'', Z')))
LESSLEAVES(cons(leaf, V'), cons(cons(U'', V''), Z')) -> LESSLEAVES(V', cons(U'', concat(V'', Z')))
LESSLEAVES(cons(leaf, V'), cons(leaf, Z')) -> LESSLEAVES(V', Z')
LESSLEAVES(cons(cons(U'', V''), V0), cons(cons(U', V'), Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), cons(U', concat(V', Z')))
LESSLEAVES(cons(cons(U'', V''), V0), cons(leaf, Z')) -> LESSLEAVES(cons(U'', concat(V'', V0)), Z')
LESSLEAVES(cons(cons(U'', cons(U', V')), V0'), cons(W, Z)) -> LESSLEAVES(cons(U'', cons(U', concat(V', V0'))), concat(W, Z))
LESSLEAVES(cons(cons(U'', leaf), V0'), cons(W, Z)) -> LESSLEAVES(cons(U'', V0'), concat(W, Z))
LESSLEAVES(cons(leaf, V'), cons(cons(U', V''), Z')) -> LESSLEAVES(V', cons(U', concat(V'', Z')))
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
POL(cons(x1, x2)) = 1 + x1 + x2 POL(leaf) = 0 POL(concat(x1, x2)) = x1 + x2 POL(LESSLEAVES(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 11
↳Dependency Graph
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost