Term Rewriting System R:
[Y, U, V, X, W, Z]
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

CONCAT(cons(U, V), Y) -> CONCAT(V, Y)
LESSLEAVES(cons(U, V), cons(W, Z)) -> LESSLEAVES(concat(U, V), concat(W, Z))
LESSLEAVES(cons(U, V), cons(W, Z)) -> CONCAT(U, V)
LESSLEAVES(cons(U, V), cons(W, Z)) -> CONCAT(W, Z)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo


Dependency Pair:

CONCAT(cons(U, V), Y) -> CONCAT(V, Y)


Rules:


concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

CONCAT(cons(U, V), Y) -> CONCAT(V, Y)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  1 + x2  
  POL(CONCAT(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Polo


Dependency Pair:


Rules:


concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering


Dependency Pair:

LESSLEAVES(cons(U, V), cons(W, Z)) -> LESSLEAVES(concat(U, V), concat(W, Z))


Rules:


concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

LESSLEAVES(cons(U, V), cons(W, Z)) -> LESSLEAVES(concat(U, V), concat(W, Z))


Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(leaf)=  1  
  POL(concat(x1, x2))=  x1 + x2  
  POL(LESSLEAVES(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes