R
↳Dependency Pair Analysis
CONCAT(cons(U, V), Y) -> CONCAT(V, Y)
LESSLEAVES(cons(U, V), cons(W, Z)) -> LESSLEAVES(concat(U, V), concat(W, Z))
LESSLEAVES(cons(U, V), cons(W, Z)) -> CONCAT(U, V)
LESSLEAVES(cons(U, V), cons(W, Z)) -> CONCAT(W, Z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
CONCAT(cons(U, V), Y) -> CONCAT(V, Y)
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
CONCAT(cons(U, V), Y) -> CONCAT(V, Y)
POL(cons(x1, x2)) = 1 + x2 POL(CONCAT(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
LESSLEAVES(cons(U, V), cons(W, Z)) -> LESSLEAVES(concat(U, V), concat(W, Z))
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost
LESSLEAVES(cons(U, V), cons(W, Z)) -> LESSLEAVES(concat(U, V), concat(W, Z))
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
POL(cons(x1, x2)) = 1 + x1 + x2 POL(leaf) = 0 POL(concat(x1, x2)) = x1 + x2 POL(LESSLEAVES(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Dependency Graph
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))
innermost