R
↳Dependency Pair Analysis
ACKIN(s(X), 0) -> U11(ackin(X, s(0)))
ACKIN(s(X), 0) -> ACKIN(X, s(0))
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> U22(ackin(Y, X))
U21(ackout(X), Y) -> ACKIN(Y, X)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> ACKIN(Y, X)
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ACKIN(s(X), 0) -> ACKIN(X, s(0))
ackin(0, X) -> ackout(s(X))
ackin(s(X), 0) -> u11(ackin(X, s(0)))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u11(ackout(X)) -> ackout(X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
u22(ackout(X)) -> ackout(X)
innermost
two new Dependency Pairs are created:
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ACKIN(s(X''), s(0)) -> U21(u11(ackin(X'', s(0))), X'')
ACKIN(s(X''), s(s(Y''))) -> U21(u21(ackin(s(X''), Y''), X''), X'')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
ACKIN(s(X''), s(s(Y''))) -> U21(u21(ackin(s(X''), Y''), X''), X'')
U21(ackout(X), Y) -> ACKIN(Y, X)
ACKIN(s(X''), s(0)) -> U21(u11(ackin(X'', s(0))), X'')
ACKIN(s(X), 0) -> ACKIN(X, s(0))
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
ackin(0, X) -> ackout(s(X))
ackin(s(X), 0) -> u11(ackin(X, s(0)))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u11(ackout(X)) -> ackout(X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
u22(ackout(X)) -> ackout(X)
innermost