R
↳Dependency Pair Analysis
F(a, empty) -> G(a, empty)
F(a, cons(x, k)) -> F(cons(x, a), k)
G(cons(x, k), d) -> G(k, cons(x, d))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
G(cons(x, k), d) -> G(k, cons(x, d))
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost
G(cons(x, k), d) -> G(k, cons(x, d))
{cons, G}
G(x1, x2) -> G(x1, x2)
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
F(a, cons(x, k)) -> F(cons(x, a), k)
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost
F(a, cons(x, k)) -> F(cons(x, a), k)
trivial
F(x1, x2) -> x2
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Dependency Graph
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost