R
↳Dependency Pair Analysis
F(a, empty) -> G(a, empty)
F(a, cons(x, k)) -> F(cons(x, a), k)
G(cons(x, k), d) -> G(k, cons(x, d))
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
→DP Problem 2
↳Inst
G(cons(x, k), d) -> G(k, cons(x, d))
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost
one new Dependency Pair is created:
G(cons(x, k), d) -> G(k, cons(x, d))
G(cons(x0, k''), cons(x'', d'')) -> G(k'', cons(x0, cons(x'', d'')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳Instantiation Transformation
→DP Problem 2
↳Inst
G(cons(x0, k''), cons(x'', d'')) -> G(k'', cons(x0, cons(x'', d'')))
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost
one new Dependency Pair is created:
G(cons(x0, k''), cons(x'', d'')) -> G(k'', cons(x0, cons(x'', d'')))
G(cons(x0'', k''''), cons(x'''', cons(x''''', d''''))) -> G(k'''', cons(x0'', cons(x'''', cons(x''''', d''''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳Inst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Inst
G(cons(x0'', k''''), cons(x'''', cons(x''''', d''''))) -> G(k'''', cons(x0'', cons(x'''', cons(x''''', d''''))))
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost
G(cons(x0'', k''''), cons(x'''', cons(x''''', d''''))) -> G(k'''', cons(x0'', cons(x'''', cons(x''''', d''''))))
POL(G(x1, x2)) = x1 POL(cons(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳Inst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Inst
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Instantiation Transformation
F(a, cons(x, k)) -> F(cons(x, a), k)
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost
one new Dependency Pair is created:
F(a, cons(x, k)) -> F(cons(x, a), k)
F(cons(x'', a''), cons(x0, k'')) -> F(cons(x0, cons(x'', a'')), k'')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 6
↳Instantiation Transformation
F(cons(x'', a''), cons(x0, k'')) -> F(cons(x0, cons(x'', a'')), k'')
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost
one new Dependency Pair is created:
F(cons(x'', a''), cons(x0, k'')) -> F(cons(x0, cons(x'', a'')), k'')
F(cons(x'''', cons(x''''', a'''')), cons(x0'', k'''')) -> F(cons(x0'', cons(x'''', cons(x''''', a''''))), k'''')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 6
↳Inst
...
→DP Problem 7
↳Polynomial Ordering
F(cons(x'''', cons(x''''', a'''')), cons(x0'', k'''')) -> F(cons(x0'', cons(x'''', cons(x''''', a''''))), k'''')
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost
F(cons(x'''', cons(x''''', a'''')), cons(x0'', k'''')) -> F(cons(x0'', cons(x'''', cons(x''''', a''''))), k'''')
POL(cons(x1, x2)) = 1 + x2 POL(F(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 6
↳Inst
...
→DP Problem 8
↳Dependency Graph
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
innermost