R
↳Dependency Pair Analysis
F(empty, cons(a, k)) -> F(cons(a, k), k)
F(cons(a, k), y) -> F(y, k)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
F(cons(a, k), y) -> F(y, k)
F(empty, cons(a, k)) -> F(cons(a, k), k)
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
two new Dependency Pairs are created:
F(cons(a, k), y) -> F(y, k)
F(cons(a, k''), cons(a'', k''')) -> F(cons(a'', k'''), k'')
F(cons(a, cons(a'', k'')), empty) -> F(empty, cons(a'', k''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
F(cons(a, cons(a'', k'')), empty) -> F(empty, cons(a'', k''))
F(cons(a, k''), cons(a'', k''')) -> F(cons(a'', k'''), k'')
F(empty, cons(a, k)) -> F(cons(a, k), k)
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(empty, cons(a, k)) -> F(cons(a, k), k)
F(empty, cons(a'', cons(a'''', k''''''))) -> F(cons(a'', cons(a'''', k'''''')), cons(a'''', k''''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Remaining Obligation(s)
F(cons(a, k''), cons(a'', k''')) -> F(cons(a'', k'''), k'')
F(empty, cons(a'', cons(a'''', k''''''))) -> F(cons(a'', cons(a'''', k'''''')), cons(a'''', k''''''))
F(cons(a, cons(a'', k'')), empty) -> F(empty, cons(a'', k''))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost