R
↳Dependency Pair Analysis
F(empty, cons(a, k)) -> F(cons(a, k), k)
F(cons(a, k), y) -> F(y, k)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
F(cons(a, k), y) -> F(y, k)
F(empty, cons(a, k)) -> F(cons(a, k), k)
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
two new Dependency Pairs are created:
F(cons(a, k), y) -> F(y, k)
F(cons(a, k''), cons(a'', k''')) -> F(cons(a'', k'''), k'')
F(cons(a, cons(a'', k'')), empty) -> F(empty, cons(a'', k''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
F(cons(a, cons(a'', k'')), empty) -> F(empty, cons(a'', k''))
F(cons(a, k''), cons(a'', k''')) -> F(cons(a'', k'''), k'')
F(empty, cons(a, k)) -> F(cons(a, k), k)
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(empty, cons(a, k)) -> F(cons(a, k), k)
F(empty, cons(a'', cons(a'''', k''''''))) -> F(cons(a'', cons(a'''', k'''''')), cons(a'''', k''''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
F(cons(a, k''), cons(a'', k''')) -> F(cons(a'', k'''), k'')
F(empty, cons(a'', cons(a'''', k''''''))) -> F(cons(a'', cons(a'''', k'''''')), cons(a'''', k''''''))
F(cons(a, cons(a'', k'')), empty) -> F(empty, cons(a'', k''))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
two new Dependency Pairs are created:
F(cons(a, k''), cons(a'', k''')) -> F(cons(a'', k'''), k'')
F(cons(a, cons(a'''', k'''''')), cons(a''0, k'''0)) -> F(cons(a''0, k'''0), cons(a'''', k''''''))
F(cons(a, empty), cons(a''0, cons(a'''', k'''''))) -> F(cons(a''0, cons(a'''', k''''')), empty)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
F(cons(a, cons(a'', k'')), empty) -> F(empty, cons(a'', k''))
F(cons(a, empty), cons(a''0, cons(a'''', k'''''))) -> F(cons(a''0, cons(a'''', k''''')), empty)
F(cons(a, cons(a'''', k'''''')), cons(a''0, k'''0)) -> F(cons(a''0, k'''0), cons(a'''', k''''''))
F(empty, cons(a'', cons(a'''', k''''''))) -> F(cons(a'', cons(a'''', k'''''')), cons(a'''', k''''''))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(cons(a, cons(a'', k'')), empty) -> F(empty, cons(a'', k''))
F(cons(a, cons(a'''', cons(a'''''', k''''''''))), empty) -> F(empty, cons(a'''', cons(a'''''', k'''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
F(cons(a, cons(a'''', k'''''')), cons(a''0, k'''0)) -> F(cons(a''0, k'''0), cons(a'''', k''''''))
F(empty, cons(a'', cons(a'''', k''''''))) -> F(cons(a'', cons(a'''', k'''''')), cons(a'''', k''''''))
F(cons(a, cons(a'''', cons(a'''''', k''''''''))), empty) -> F(empty, cons(a'''', cons(a'''''', k'''''''')))
F(cons(a, empty), cons(a''0, cons(a'''', k'''''))) -> F(cons(a''0, cons(a'''', k''''')), empty)
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
two new Dependency Pairs are created:
F(cons(a, cons(a'''', k'''''')), cons(a''0, k'''0)) -> F(cons(a''0, k'''0), cons(a'''', k''''''))
F(cons(a, cons(a'''''', k'''''''')), cons(a''0'', cons(a''''''', k'''''''''))) -> F(cons(a''0'', cons(a''''''', k''''''''')), cons(a'''''', k''''''''))
F(cons(a, cons(a'''''', cons(a''''''', k''''''''))), cons(a''0'', empty)) -> F(cons(a''0'', empty), cons(a'''''', cons(a''''''', k'''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
F(cons(a, cons(a'''', cons(a'''''', k''''''''))), empty) -> F(empty, cons(a'''', cons(a'''''', k'''''''')))
F(cons(a, empty), cons(a''0, cons(a'''', k'''''))) -> F(cons(a''0, cons(a'''', k''''')), empty)
F(cons(a, cons(a'''''', cons(a''''''', k''''''''))), cons(a''0'', empty)) -> F(cons(a''0'', empty), cons(a'''''', cons(a''''''', k'''''''')))
F(cons(a, cons(a'''''', k'''''''')), cons(a''0'', cons(a''''''', k'''''''''))) -> F(cons(a''0'', cons(a''''''', k''''''''')), cons(a'''''', k''''''''))
F(empty, cons(a'', cons(a'''', k''''''))) -> F(cons(a'', cons(a'''', k'''''')), cons(a'''', k''''''))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(empty, cons(a'', cons(a'''', k''''''))) -> F(cons(a'', cons(a'''', k'''''')), cons(a'''', k''''''))
F(empty, cons(a''', cons(a''''', cons(a'''''''''', k'''''''''''')))) -> F(cons(a''', cons(a''''', cons(a'''''''''', k''''''''''''))), cons(a''''', cons(a'''''''''', k'''''''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
F(cons(a, empty), cons(a''0, cons(a'''', k'''''))) -> F(cons(a''0, cons(a'''', k''''')), empty)
F(cons(a, cons(a'''''', cons(a''''''', k''''''''))), cons(a''0'', empty)) -> F(cons(a''0'', empty), cons(a'''''', cons(a''''''', k'''''''')))
F(cons(a, cons(a'''''', k'''''''')), cons(a''0'', cons(a''''''', k'''''''''))) -> F(cons(a''0'', cons(a''''''', k''''''''')), cons(a'''''', k''''''''))
F(empty, cons(a''', cons(a''''', cons(a'''''''''', k'''''''''''')))) -> F(cons(a''', cons(a''''', cons(a'''''''''', k''''''''''''))), cons(a''''', cons(a'''''''''', k'''''''''''')))
F(cons(a, cons(a'''', cons(a'''''', k''''''''))), empty) -> F(empty, cons(a'''', cons(a'''''', k'''''''')))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(cons(a, empty), cons(a''0, cons(a'''', k'''''))) -> F(cons(a''0, cons(a'''', k''''')), empty)
F(cons(a, empty), cons(a''0', cons(a'''''', cons(a'''''''', k'''''''''')))) -> F(cons(a''0', cons(a'''''', cons(a'''''''', k''''''''''))), empty)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
F(cons(a, cons(a'''''', k'''''''')), cons(a''0'', cons(a''''''', k'''''''''))) -> F(cons(a''0'', cons(a''''''', k''''''''')), cons(a'''''', k''''''''))
F(empty, cons(a''', cons(a''''', cons(a'''''''''', k'''''''''''')))) -> F(cons(a''', cons(a''''', cons(a'''''''''', k''''''''''''))), cons(a''''', cons(a'''''''''', k'''''''''''')))
F(cons(a, cons(a'''', cons(a'''''', k''''''''))), empty) -> F(empty, cons(a'''', cons(a'''''', k'''''''')))
F(cons(a, empty), cons(a''0', cons(a'''''', cons(a'''''''', k'''''''''')))) -> F(cons(a''0', cons(a'''''', cons(a'''''''', k''''''''''))), empty)
F(cons(a, cons(a'''''', cons(a''''''', k''''''''))), cons(a''0'', empty)) -> F(cons(a''0'', empty), cons(a'''''', cons(a''''''', k'''''''')))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(cons(a, cons(a'''', cons(a'''''', k''''''''))), empty) -> F(empty, cons(a'''', cons(a'''''', k'''''''')))
F(cons(a, cons(a''''', cons(a'''''''', cons(a'''''''''''', k'''''''''''''')))), empty) -> F(empty, cons(a''''', cons(a'''''''', cons(a'''''''''''', k''''''''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
F(empty, cons(a''', cons(a''''', cons(a'''''''''', k'''''''''''')))) -> F(cons(a''', cons(a''''', cons(a'''''''''', k''''''''''''))), cons(a''''', cons(a'''''''''', k'''''''''''')))
F(cons(a, cons(a''''', cons(a'''''''', cons(a'''''''''''', k'''''''''''''')))), empty) -> F(empty, cons(a''''', cons(a'''''''', cons(a'''''''''''', k''''''''''''''))))
F(cons(a, empty), cons(a''0', cons(a'''''', cons(a'''''''', k'''''''''')))) -> F(cons(a''0', cons(a'''''', cons(a'''''''', k''''''''''))), empty)
F(cons(a, cons(a'''''', cons(a''''''', k''''''''))), cons(a''0'', empty)) -> F(cons(a''0'', empty), cons(a'''''', cons(a''''''', k'''''''')))
F(cons(a, cons(a'''''', k'''''''')), cons(a''0'', cons(a''''''', k'''''''''))) -> F(cons(a''0'', cons(a''''''', k''''''''')), cons(a'''''', k''''''''))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
two new Dependency Pairs are created:
F(cons(a, cons(a'''''', k'''''''')), cons(a''0'', cons(a''''''', k'''''''''))) -> F(cons(a''0'', cons(a''''''', k''''''''')), cons(a'''''', k''''''''))
F(cons(a, cons(a''''''0, cons(a'''''''''', k''''''''''''))), cons(a''0'''', cons(a'''''''0, k'''''''''0))) -> F(cons(a''0'''', cons(a'''''''0, k'''''''''0)), cons(a''''''0, cons(a'''''''''', k'''''''''''')))
F(cons(a, cons(a''''''0, empty)), cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k''''''''''')))) -> F(cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k'''''''''''))), cons(a''''''0, empty))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
F(cons(a, cons(a''''', cons(a'''''''', cons(a'''''''''''', k'''''''''''''')))), empty) -> F(empty, cons(a''''', cons(a'''''''', cons(a'''''''''''', k''''''''''''''))))
F(cons(a, empty), cons(a''0', cons(a'''''', cons(a'''''''', k'''''''''')))) -> F(cons(a''0', cons(a'''''', cons(a'''''''', k''''''''''))), empty)
F(cons(a, cons(a'''''', cons(a''''''', k''''''''))), cons(a''0'', empty)) -> F(cons(a''0'', empty), cons(a'''''', cons(a''''''', k'''''''')))
F(cons(a, cons(a''''''0, empty)), cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k''''''''''')))) -> F(cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k'''''''''''))), cons(a''''''0, empty))
F(cons(a, cons(a''''''0, cons(a'''''''''', k''''''''''''))), cons(a''0'''', cons(a'''''''0, k'''''''''0))) -> F(cons(a''0'''', cons(a'''''''0, k'''''''''0)), cons(a''''''0, cons(a'''''''''', k'''''''''''')))
F(empty, cons(a''', cons(a''''', cons(a'''''''''', k'''''''''''')))) -> F(cons(a''', cons(a''''', cons(a'''''''''', k''''''''''''))), cons(a''''', cons(a'''''''''', k'''''''''''')))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(cons(a, cons(a'''''', cons(a''''''', k''''''''))), cons(a''0'', empty)) -> F(cons(a''0'', empty), cons(a'''''', cons(a''''''', k'''''''')))
F(cons(a, cons(a''''''1, cons(a'''''''', cons(a'''''''''', k'''''''''''')))), cons(a''0'''', empty)) -> F(cons(a''0'''', empty), cons(a''''''1, cons(a'''''''', cons(a'''''''''', k''''''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 11
↳Forward Instantiation Transformation
F(cons(a, empty), cons(a''0', cons(a'''''', cons(a'''''''', k'''''''''')))) -> F(cons(a''0', cons(a'''''', cons(a'''''''', k''''''''''))), empty)
F(cons(a, cons(a''''''1, cons(a'''''''', cons(a'''''''''', k'''''''''''')))), cons(a''0'''', empty)) -> F(cons(a''0'''', empty), cons(a''''''1, cons(a'''''''', cons(a'''''''''', k''''''''''''))))
F(cons(a, cons(a''''''0, empty)), cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k''''''''''')))) -> F(cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k'''''''''''))), cons(a''''''0, empty))
F(cons(a, cons(a''''''0, cons(a'''''''''', k''''''''''''))), cons(a''0'''', cons(a'''''''0, k'''''''''0))) -> F(cons(a''0'''', cons(a'''''''0, k'''''''''0)), cons(a''''''0, cons(a'''''''''', k'''''''''''')))
F(empty, cons(a''', cons(a''''', cons(a'''''''''', k'''''''''''')))) -> F(cons(a''', cons(a''''', cons(a'''''''''', k''''''''''''))), cons(a''''', cons(a'''''''''', k'''''''''''')))
F(cons(a, cons(a''''', cons(a'''''''', cons(a'''''''''''', k'''''''''''''')))), empty) -> F(empty, cons(a''''', cons(a'''''''', cons(a'''''''''''', k''''''''''''''))))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(cons(a, empty), cons(a''0', cons(a'''''', cons(a'''''''', k'''''''''')))) -> F(cons(a''0', cons(a'''''', cons(a'''''''', k''''''''''))), empty)
F(cons(a, empty), cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k''''''''''''''''))))) -> F(cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k'''''''''''''''')))), empty)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 12
↳Forward Instantiation Transformation
F(cons(a, cons(a''''''0, empty)), cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k''''''''''')))) -> F(cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k'''''''''''))), cons(a''''''0, empty))
F(cons(a, cons(a''''''0, cons(a'''''''''', k''''''''''''))), cons(a''0'''', cons(a'''''''0, k'''''''''0))) -> F(cons(a''0'''', cons(a'''''''0, k'''''''''0)), cons(a''''''0, cons(a'''''''''', k'''''''''''')))
F(empty, cons(a''', cons(a''''', cons(a'''''''''', k'''''''''''')))) -> F(cons(a''', cons(a''''', cons(a'''''''''', k''''''''''''))), cons(a''''', cons(a'''''''''', k'''''''''''')))
F(cons(a, cons(a''''', cons(a'''''''', cons(a'''''''''''', k'''''''''''''')))), empty) -> F(empty, cons(a''''', cons(a'''''''', cons(a'''''''''''', k''''''''''''''))))
F(cons(a, empty), cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k''''''''''''''''))))) -> F(cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k'''''''''''''''')))), empty)
F(cons(a, cons(a''''''1, cons(a'''''''', cons(a'''''''''', k'''''''''''')))), cons(a''0'''', empty)) -> F(cons(a''0'''', empty), cons(a''''''1, cons(a'''''''', cons(a'''''''''', k''''''''''''))))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
two new Dependency Pairs are created:
F(cons(a, cons(a''''''0, cons(a'''''''''', k''''''''''''))), cons(a''0'''', cons(a'''''''0, k'''''''''0))) -> F(cons(a''0'''', cons(a'''''''0, k'''''''''0)), cons(a''''''0, cons(a'''''''''', k'''''''''''')))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', k''''''''''''''))), cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k''''''''''''''')))) -> F(cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k'''''''''''''''))), cons(a''''''0'', cons(a'''''''''''', k'''''''''''''')))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k'''''''''''''')))), cons(a''0'''''', cons(a'''''''0'', empty))) -> F(cons(a''0'''''', cons(a'''''''0'', empty)), cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k''''''''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 13
↳Forward Instantiation Transformation
F(cons(a, cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k'''''''''''''')))), cons(a''0'''''', cons(a'''''''0'', empty))) -> F(cons(a''0'''''', cons(a'''''''0'', empty)), cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k''''''''''''''))))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', k''''''''''''''))), cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k''''''''''''''')))) -> F(cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k'''''''''''''''))), cons(a''''''0'', cons(a'''''''''''', k'''''''''''''')))
F(empty, cons(a''', cons(a''''', cons(a'''''''''', k'''''''''''')))) -> F(cons(a''', cons(a''''', cons(a'''''''''', k''''''''''''))), cons(a''''', cons(a'''''''''', k'''''''''''')))
F(cons(a, cons(a''''', cons(a'''''''', cons(a'''''''''''', k'''''''''''''')))), empty) -> F(empty, cons(a''''', cons(a'''''''', cons(a'''''''''''', k''''''''''''''))))
F(cons(a, empty), cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k''''''''''''''''))))) -> F(cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k'''''''''''''''')))), empty)
F(cons(a, cons(a''''''1, cons(a'''''''', cons(a'''''''''', k'''''''''''')))), cons(a''0'''', empty)) -> F(cons(a''0'''', empty), cons(a''''''1, cons(a'''''''', cons(a'''''''''', k''''''''''''))))
F(cons(a, cons(a''''''0, empty)), cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k''''''''''')))) -> F(cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k'''''''''''))), cons(a''''''0, empty))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(empty, cons(a''', cons(a''''', cons(a'''''''''', k'''''''''''')))) -> F(cons(a''', cons(a''''', cons(a'''''''''', k''''''''''''))), cons(a''''', cons(a'''''''''', k'''''''''''')))
F(empty, cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))) -> F(cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k'''''''''''''''''')))), cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 14
↳Forward Instantiation Transformation
F(cons(a, cons(a''''''0'', cons(a'''''''''''', k''''''''''''''))), cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k''''''''''''''')))) -> F(cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k'''''''''''''''))), cons(a''''''0'', cons(a'''''''''''', k'''''''''''''')))
F(empty, cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))) -> F(cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k'''''''''''''''''')))), cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))
F(cons(a, cons(a''''', cons(a'''''''', cons(a'''''''''''', k'''''''''''''')))), empty) -> F(empty, cons(a''''', cons(a'''''''', cons(a'''''''''''', k''''''''''''''))))
F(cons(a, empty), cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k''''''''''''''''))))) -> F(cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k'''''''''''''''')))), empty)
F(cons(a, cons(a''''''1, cons(a'''''''', cons(a'''''''''', k'''''''''''')))), cons(a''0'''', empty)) -> F(cons(a''0'''', empty), cons(a''''''1, cons(a'''''''', cons(a'''''''''', k''''''''''''))))
F(cons(a, cons(a''''''0, empty)), cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k''''''''''')))) -> F(cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k'''''''''''))), cons(a''''''0, empty))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k'''''''''''''')))), cons(a''0'''''', cons(a'''''''0'', empty))) -> F(cons(a''0'''''', cons(a'''''''0'', empty)), cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k''''''''''''''))))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(cons(a, cons(a''''', cons(a'''''''', cons(a'''''''''''', k'''''''''''''')))), empty) -> F(empty, cons(a''''', cons(a'''''''', cons(a'''''''''''', k''''''''''''''))))
F(cons(a, cons(a'''''', cons(a''''''''', cons(a'''''''''''''', cons(a'''''''''''''''''', k''''''''''''''''''''))))), empty) -> F(empty, cons(a'''''', cons(a''''''''', cons(a'''''''''''''', cons(a'''''''''''''''''', k'''''''''''''''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 15
↳Forward Instantiation Transformation
F(empty, cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))) -> F(cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k'''''''''''''''''')))), cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))
F(cons(a, cons(a'''''', cons(a''''''''', cons(a'''''''''''''', cons(a'''''''''''''''''', k''''''''''''''''''''))))), empty) -> F(empty, cons(a'''''', cons(a''''''''', cons(a'''''''''''''', cons(a'''''''''''''''''', k'''''''''''''''''''')))))
F(cons(a, empty), cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k''''''''''''''''))))) -> F(cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k'''''''''''''''')))), empty)
F(cons(a, cons(a''''''1, cons(a'''''''', cons(a'''''''''', k'''''''''''')))), cons(a''0'''', empty)) -> F(cons(a''0'''', empty), cons(a''''''1, cons(a'''''''', cons(a'''''''''', k''''''''''''))))
F(cons(a, cons(a''''''0, empty)), cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k''''''''''')))) -> F(cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k'''''''''''))), cons(a''''''0, empty))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k'''''''''''''')))), cons(a''0'''''', cons(a'''''''0'', empty))) -> F(cons(a''0'''''', cons(a'''''''0'', empty)), cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k''''''''''''''))))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', k''''''''''''''))), cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k''''''''''''''')))) -> F(cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k'''''''''''''''))), cons(a''''''0'', cons(a'''''''''''', k'''''''''''''')))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(cons(a, cons(a''''''0, empty)), cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k''''''''''')))) -> F(cons(a''0'''', cons(a'''''''0, cons(a'''''''''', k'''''''''''))), cons(a''''''0, empty))
F(cons(a, cons(a''''''0', empty)), cons(a''0'''''', cons(a'''''''0', cons(a'''''''''''', cons(a''''''''''''', k''''''''''''''))))) -> F(cons(a''0'''''', cons(a'''''''0', cons(a'''''''''''', cons(a''''''''''''', k'''''''''''''')))), cons(a''''''0', empty))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 16
↳Forward Instantiation Transformation
F(cons(a, cons(a'''''', cons(a''''''''', cons(a'''''''''''''', cons(a'''''''''''''''''', k''''''''''''''''''''))))), empty) -> F(empty, cons(a'''''', cons(a''''''''', cons(a'''''''''''''', cons(a'''''''''''''''''', k'''''''''''''''''''')))))
F(cons(a, empty), cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k''''''''''''''''))))) -> F(cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k'''''''''''''''')))), empty)
F(cons(a, cons(a''''''1, cons(a'''''''', cons(a'''''''''', k'''''''''''')))), cons(a''0'''', empty)) -> F(cons(a''0'''', empty), cons(a''''''1, cons(a'''''''', cons(a'''''''''', k''''''''''''))))
F(cons(a, cons(a''''''0', empty)), cons(a''0'''''', cons(a'''''''0', cons(a'''''''''''', cons(a''''''''''''', k''''''''''''''))))) -> F(cons(a''0'''''', cons(a'''''''0', cons(a'''''''''''', cons(a''''''''''''', k'''''''''''''')))), cons(a''''''0', empty))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k'''''''''''''')))), cons(a''0'''''', cons(a'''''''0'', empty))) -> F(cons(a''0'''''', cons(a'''''''0'', empty)), cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k''''''''''''''))))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', k''''''''''''''))), cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k''''''''''''''')))) -> F(cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k'''''''''''''''))), cons(a''''''0'', cons(a'''''''''''', k'''''''''''''')))
F(empty, cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))) -> F(cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k'''''''''''''''''')))), cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(cons(a, cons(a''''''1, cons(a'''''''', cons(a'''''''''', k'''''''''''')))), cons(a''0'''', empty)) -> F(cons(a''0'''', empty), cons(a''''''1, cons(a'''''''', cons(a'''''''''', k''''''''''''))))
F(cons(a, cons(a''''''1', cons(a''''''''', cons(a'''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))), cons(a''0''''', empty)) -> F(cons(a''0''''', empty), cons(a''''''1', cons(a''''''''', cons(a'''''''''''', cons(a'''''''''''''''', k'''''''''''''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 17
↳Forward Instantiation Transformation
F(cons(a, empty), cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k''''''''''''''''))))) -> F(cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k'''''''''''''''')))), empty)
F(cons(a, cons(a''''''1', cons(a''''''''', cons(a'''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))), cons(a''0''''', empty)) -> F(cons(a''0''''', empty), cons(a''''''1', cons(a''''''''', cons(a'''''''''''', cons(a'''''''''''''''', k'''''''''''''''''')))))
F(cons(a, cons(a''''''0', empty)), cons(a''0'''''', cons(a'''''''0', cons(a'''''''''''', cons(a''''''''''''', k''''''''''''''))))) -> F(cons(a''0'''''', cons(a'''''''0', cons(a'''''''''''', cons(a''''''''''''', k'''''''''''''')))), cons(a''''''0', empty))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k'''''''''''''')))), cons(a''0'''''', cons(a'''''''0'', empty))) -> F(cons(a''0'''''', cons(a'''''''0'', empty)), cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k''''''''''''''))))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', k''''''''''''''))), cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k''''''''''''''')))) -> F(cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k'''''''''''''''))), cons(a''''''0'', cons(a'''''''''''', k'''''''''''''')))
F(empty, cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))) -> F(cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k'''''''''''''''''')))), cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))
F(cons(a, cons(a'''''', cons(a''''''''', cons(a'''''''''''''', cons(a'''''''''''''''''', k''''''''''''''''''''))))), empty) -> F(empty, cons(a'''''', cons(a''''''''', cons(a'''''''''''''', cons(a'''''''''''''''''', k'''''''''''''''''''')))))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost
one new Dependency Pair is created:
F(cons(a, empty), cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k''''''''''''''''))))) -> F(cons(a''0'', cons(a''''''0, cons(a'''''''''', cons(a'''''''''''''', k'''''''''''''''')))), empty)
F(cons(a, empty), cons(a''0''', cons(a''''''0', cons(a'''''''''''', cons(a'''''''''''''''', cons(a'''''''''''''''''''', k'''''''''''''''''''''')))))) -> F(cons(a''0''', cons(a''''''0', cons(a'''''''''''', cons(a'''''''''''''''', cons(a'''''''''''''''''''', k''''''''''''''''''''''))))), empty)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 18
↳Remaining Obligation(s)
F(cons(a, cons(a''''''0', empty)), cons(a''0'''''', cons(a'''''''0', cons(a'''''''''''', cons(a''''''''''''', k''''''''''''''))))) -> F(cons(a''0'''''', cons(a'''''''0', cons(a'''''''''''', cons(a''''''''''''', k'''''''''''''')))), cons(a''''''0', empty))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k'''''''''''''')))), cons(a''0'''''', cons(a'''''''0'', empty))) -> F(cons(a''0'''''', cons(a'''''''0'', empty)), cons(a''''''0'', cons(a'''''''''''', cons(a''''''''''''', k''''''''''''''))))
F(cons(a, cons(a''''''0'', cons(a'''''''''''', k''''''''''''''))), cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k''''''''''''''')))) -> F(cons(a''0'''''', cons(a'''''''0'', cons(a''''''''''''', k'''''''''''''''))), cons(a''''''0'', cons(a'''''''''''', k'''''''''''''')))
F(empty, cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))) -> F(cons(a'''', cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k'''''''''''''''''')))), cons(a'''''', cons(a''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))
F(cons(a, cons(a'''''', cons(a''''''''', cons(a'''''''''''''', cons(a'''''''''''''''''', k''''''''''''''''''''))))), empty) -> F(empty, cons(a'''''', cons(a''''''''', cons(a'''''''''''''', cons(a'''''''''''''''''', k'''''''''''''''''''')))))
F(cons(a, empty), cons(a''0''', cons(a''''''0', cons(a'''''''''''', cons(a'''''''''''''''', cons(a'''''''''''''''''''', k'''''''''''''''''''''')))))) -> F(cons(a''0''', cons(a''''''0', cons(a'''''''''''', cons(a'''''''''''''''', cons(a'''''''''''''''''''', k''''''''''''''''''''''))))), empty)
F(cons(a, cons(a''''''1', cons(a''''''''', cons(a'''''''''''', cons(a'''''''''''''''', k''''''''''''''''''))))), cons(a''0''''', empty)) -> F(cons(a''0''''', empty), cons(a''''''1', cons(a''''''''', cons(a'''''''''''', cons(a'''''''''''''''', k'''''''''''''''''')))))
f(x, empty) -> x
f(empty, cons(a, k)) -> f(cons(a, k), k)
f(cons(a, k), y) -> f(y, k)
innermost