p(

p(

p(

R

↳Dependency Pair Analysis

P(m,n, s(r)) -> P(m,r,n)

P(m, s(n), 0) -> P(0,n,m)

Furthermore,

R

↳DPs

→DP Problem 1

↳Polynomial Ordering

**P( m, s(n), 0) -> P(0, n, m)**

p(m,n, s(r)) -> p(m,r,n)

p(m, s(n), 0) -> p(0,n,m)

p(m, 0, 0) ->m

innermost

The following dependency pairs can be strictly oriented:

P(m, s(n), 0) -> P(0,n,m)

P(m,n, s(r)) -> P(m,r,n)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(P(x)_{1}, x_{2}, x_{3})= x _{1}+ x_{2}+ x_{3}_{ }^{ }_{ }^{ }POL(0)= 0 _{ }^{ }_{ }^{ }POL(s(x)_{1})= 1 + x _{1}_{ }^{ }

resulting in one new DP problem.

R

↳DPs

→DP Problem 1

↳Polo

→DP Problem 2

↳Dependency Graph

p(m,n, s(r)) -> p(m,r,n)

p(m, s(n), 0) -> p(0,n,m)

p(m, 0, 0) ->m

innermost

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes