R
↳Dependency Pair Analysis
P(m, n, s(r)) -> P(m, r, n)
P(m, s(n), 0) -> P(0, n, m)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
P(m, s(n), 0) -> P(0, n, m)
P(m, n, s(r)) -> P(m, r, n)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(m, n, s(r)) -> P(m, r, n)
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(m, s(n), 0) -> P(0, n, m)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
three new Dependency Pairs are created:
P(m, s(n), 0) -> P(0, n, m)
P(0, s(s(n'')), 0) -> P(0, s(n''), 0)
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(s(s(n'''')), s(0), 0) -> P(0, 0, s(s(n'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
P(0, s(s(n'')), 0) -> P(0, s(n''), 0)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
one new Dependency Pair is created:
P(0, s(s(n'')), 0) -> P(0, s(n''), 0)
P(0, s(s(s(n''''))), 0) -> P(0, s(s(n'''')), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
P(0, s(s(s(n''''))), 0) -> P(0, s(s(n'''')), 0)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
P(0, s(s(s(n''''))), 0) -> P(0, s(s(n'''')), 0)
POL(P(x1, x2, x3)) = 1 + x2 POL(0) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
P(s(s(n'''')), s(0), 0) -> P(0, 0, s(s(n'''')))
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
P(s(s(n'''')), s(0), 0) -> P(0, 0, s(s(n'''')))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(s(s(n'''''')), 0, s(s(0))) -> P(s(s(n'''''')), s(0), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(0), s(s(s(n''''''))), 0) -> P(0, s(s(n'''''')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
P(s(0), s(s(s(n''''''))), 0) -> P(0, s(s(n'''''')), s(0))
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
P(s(0), s(s(s(n''''''))), 0) -> P(0, s(s(n'''''')), s(0))
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
POL(P(x1, x2, x3)) = x1 POL(0) = 0 POL(s(x1)) = 1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 10
↳Dependency Graph
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 11
↳Polynomial Ordering
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
POL(P(x1, x2, x3)) = 1 + x1 + x2 + x3 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost