Term Rewriting System R:
[m, n, r]
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

P(m, n, s(r)) -> P(m, r, n)
P(m, s(n), 0) -> P(0, n, m)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation


Dependency Pairs:

P(m, s(n), 0) -> P(0, n, m)
P(m, n, s(r)) -> P(m, r, n)


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(m, n, s(r)) -> P(m, r, n)
two new Dependency Pairs are created:

P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
Forward Instantiation Transformation


Dependency Pairs:

P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(m, s(n), 0) -> P(0, n, m)


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(m, s(n), 0) -> P(0, n, m)
three new Dependency Pairs are created:

P(0, s(s(n'')), 0) -> P(0, s(n''), 0)
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(s(s(n'''')), s(0), 0) -> P(0, 0, s(s(n'''')))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 3
Forward Instantiation Transformation


Dependency Pair:

P(0, s(s(n'')), 0) -> P(0, s(n''), 0)


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(0, s(s(n'')), 0) -> P(0, s(n''), 0)
one new Dependency Pair is created:

P(0, s(s(s(n''''))), 0) -> P(0, s(s(n'''')), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 5
Argument Filtering and Ordering


Dependency Pair:

P(0, s(s(s(n''''))), 0) -> P(0, s(s(n'''')), 0)


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




The following dependency pair can be strictly oriented:

P(0, s(s(s(n''''))), 0) -> P(0, s(s(n'''')), 0)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
P(x1, x2, x3) -> P(x1, x2, x3)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 9
Dependency Graph


Dependency Pair:


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 4
Forward Instantiation Transformation


Dependency Pairs:

P(s(s(n'''')), s(0), 0) -> P(0, 0, s(s(n'''')))
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
two new Dependency Pairs are created:

P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 6
Forward Instantiation Transformation


Dependency Pairs:

P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
P(s(s(n'''')), s(0), 0) -> P(0, 0, s(s(n'''')))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
two new Dependency Pairs are created:

P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(s(s(n'''''')), 0, s(s(0))) -> P(s(s(n'''''')), s(0), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 7
Forward Instantiation Transformation


Dependency Pairs:

P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
two new Dependency Pairs are created:

P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(0), s(s(s(n''''''))), 0) -> P(0, s(s(n'''''')), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 8
Forward Instantiation Transformation


Dependency Pairs:

P(s(0), s(s(s(n''''''))), 0) -> P(0, s(s(n'''''')), s(0))
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
two new Dependency Pairs are created:

P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 10
Forward Instantiation Transformation


Dependency Pairs:

P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
P(s(0), s(s(s(n''''''))), 0) -> P(0, s(s(n'''''')), s(0))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
one new Dependency Pair is created:

P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 11
Forward Instantiation Transformation


Dependency Pairs:

P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
one new Dependency Pair is created:

P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 12
Forward Instantiation Transformation


Dependency Pairs:

P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
two new Dependency Pairs are created:

P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(s(n''''''''))), s(s(0)), 0) -> P(0, s(0), s(s(s(n''''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 13
Forward Instantiation Transformation


Dependency Pairs:

P(s(s(s(n''''''''))), s(s(0)), 0) -> P(0, s(0), s(s(s(n''''''''))))
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))
P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))
two new Dependency Pairs are created:

P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 14
Forward Instantiation Transformation


Dependency Pairs:

P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
P(s(s(s(n''''''''))), s(s(0)), 0) -> P(0, s(0), s(s(s(n''''''''))))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
one new Dependency Pair is created:

P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 15
Forward Instantiation Transformation


Dependency Pairs:

P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
one new Dependency Pair is created:

P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 16
Forward Instantiation Transformation


Dependency Pairs:

P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
one new Dependency Pair is created:

P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 17
Forward Instantiation Transformation


Dependency Pairs:

P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
two new Dependency Pairs are created:

P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(0)), s(s(s(s(n'''''''''')))), 0) -> P(0, s(s(s(n''''''''''))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 18
Forward Instantiation Transformation


Dependency Pairs:

P(s(s(0)), s(s(s(s(n'''''''''')))), 0) -> P(0, s(s(s(n''''''''''))), s(s(0)))
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
two new Dependency Pairs are created:

P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 19
Forward Instantiation Transformation


Dependency Pairs:

P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
P(s(s(0)), s(s(s(s(n'''''''''')))), 0) -> P(0, s(s(s(n''''''''''))), s(s(0)))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
one new Dependency Pair is created:

P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 20
Forward Instantiation Transformation


Dependency Pairs:

P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
one new Dependency Pair is created:

P(s(s(r'''''''''''''')), s(0), s(s(s(s(r''''''''''''))))) -> P(s(s(r'''''''''''''')), s(s(s(r''''''''''''))), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 21
Forward Instantiation Transformation


Dependency Pairs:

P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(s(r'''''''''''''')), s(0), s(s(s(s(r''''''''''''))))) -> P(s(s(r'''''''''''''')), s(s(s(r''''''''''''))), s(0))
P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
one new Dependency Pair is created:

P(s(s(r'''''''''''''')), s(s(s(s(r'''''''''''''''')))), s(0)) -> P(s(s(r'''''''''''''')), 0, s(s(s(s(r'''''''''''''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 22
Forward Instantiation Transformation


Dependency Pairs:

P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
P(s(s(r'''''''''''''')), s(s(s(s(r'''''''''''''''')))), s(0)) -> P(s(s(r'''''''''''''')), 0, s(s(s(s(r'''''''''''''''')))))
P(s(s(r'''''''''''''')), s(0), s(s(s(s(r''''''''''''))))) -> P(s(s(r'''''''''''''')), s(s(s(r''''''''''''))), s(0))
P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
one new Dependency Pair is created:

P(s(s(s(r'''''''''''''''''))), 0, s(s(s(s(r''''''''''''''''))))) -> P(s(s(s(r'''''''''''''''''))), s(s(s(r''''''''''''''''))), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 23
Forward Instantiation Transformation


Dependency Pairs:

P(s(s(r'''''''''''''')), s(0), s(s(s(s(r''''''''''''))))) -> P(s(s(r'''''''''''''')), s(s(s(r''''''''''''))), s(0))
P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r'''''''''''''''''))), 0, s(s(s(s(r''''''''''''''''))))) -> P(s(s(s(r'''''''''''''''''))), s(s(s(r''''''''''''''''))), 0)
P(s(s(r'''''''''''''')), s(s(s(s(r'''''''''''''''')))), s(0)) -> P(s(s(r'''''''''''''')), 0, s(s(s(s(r'''''''''''''''')))))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
two new Dependency Pairs are created:

P(s(s(s(r''''''''''''''''))), s(s(s(s(r''''''''''''''''')))), 0) -> P(0, s(s(s(r'''''''''''''''''))), s(s(s(r''''''''''''''''))))
P(s(s(s(s(n'''''''''''')))), s(s(s(0))), 0) -> P(0, s(s(0)), s(s(s(s(n'''''''''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 24
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

P(s(s(s(s(n'''''''''''')))), s(s(s(0))), 0) -> P(0, s(s(0)), s(s(s(s(n'''''''''''')))))
P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r''''''''''''''''))), s(s(s(s(r''''''''''''''''')))), 0) -> P(0, s(s(s(r'''''''''''''''''))), s(s(s(r''''''''''''''''))))
P(s(s(s(r'''''''''''''''''))), 0, s(s(s(s(r''''''''''''''''))))) -> P(s(s(s(r'''''''''''''''''))), s(s(s(r''''''''''''''''))), 0)
P(s(s(r'''''''''''''')), s(s(s(s(r'''''''''''''''')))), s(0)) -> P(s(s(r'''''''''''''')), 0, s(s(s(s(r'''''''''''''''')))))
P(s(s(r'''''''''''''')), s(0), s(s(s(s(r''''''''''''))))) -> P(s(s(r'''''''''''''')), s(s(s(r''''''''''''))), s(0))


Rules:


p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:01 minutes