R
↳Dependency Pair Analysis
P(m, n, s(r)) -> P(m, r, n)
P(m, s(n), 0) -> P(0, n, m)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
P(m, s(n), 0) -> P(0, n, m)
P(m, n, s(r)) -> P(m, r, n)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(m, n, s(r)) -> P(m, r, n)
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(m, s(n), 0) -> P(0, n, m)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
three new Dependency Pairs are created:
P(m, s(n), 0) -> P(0, n, m)
P(0, s(s(n'')), 0) -> P(0, s(n''), 0)
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(s(s(n'''')), s(0), 0) -> P(0, 0, s(s(n'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
P(0, s(s(n'')), 0) -> P(0, s(n''), 0)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
one new Dependency Pair is created:
P(0, s(s(n'')), 0) -> P(0, s(n''), 0)
P(0, s(s(s(n''''))), 0) -> P(0, s(s(n'''')), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
P(0, s(s(s(n''''))), 0) -> P(0, s(s(n'''')), 0)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
P(0, s(s(s(n''''))), 0) -> P(0, s(s(n'''')), 0)
P(x1, x2, x3) -> P(x1, x2, x3)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
P(s(s(n'''')), s(0), 0) -> P(0, 0, s(s(n'''')))
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
P(s(s(n'''')), s(0), 0) -> P(0, 0, s(s(n'''')))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(s(s(n'''''')), 0, s(s(0))) -> P(s(s(n'''''')), s(0), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(0), s(s(s(n''''''))), 0) -> P(0, s(s(n'''''')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
P(s(0), s(s(s(n''''''))), 0) -> P(0, s(s(n'''''')), s(0))
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(m'''', s(r''''), s(s(r'''''))) -> P(m'''', s(r'''''), s(r''''))
P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
P(s(0), s(s(s(n''''''))), 0) -> P(0, s(s(n'''''')), s(0))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
one new Dependency Pair is created:
P(m'''', s(s(n'''')), s(0)) -> P(m'''', 0, s(s(n'''')))
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 11
↳Forward Instantiation Transformation
P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
one new Dependency Pair is created:
P(s(r0''''), 0, s(s(s(r'''''')))) -> P(s(r0''''), s(s(r'''''')), 0)
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 12
↳Forward Instantiation Transformation
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(s(s(r'''''''')), s(s(r''''')), 0) -> P(0, s(r'''''), s(s(r'''''''')))
P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(s(n''''''''))), s(s(0)), 0) -> P(0, s(0), s(s(s(n''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 13
↳Forward Instantiation Transformation
P(s(s(s(n''''''''))), s(s(0)), 0) -> P(0, s(0), s(s(s(n''''''''))))
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))
P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(m'''''', s(s(r'''''''')), s(s(r'''''0))) -> P(m'''''', s(r'''''0), s(s(r'''''''')))
P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 14
↳Forward Instantiation Transformation
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
P(s(s(s(n''''''''))), s(s(0)), 0) -> P(0, s(0), s(s(s(n''''''''))))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
one new Dependency Pair is created:
P(m'''''', s(0), s(s(s(n'''''')))) -> P(m'''''', s(s(n'''''')), s(0))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 15
↳Forward Instantiation Transformation
P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
one new Dependency Pair is created:
P(s(r0''''''), s(s(s(r''''''''))), s(0)) -> P(s(r0''''''), 0, s(s(s(r''''''''))))
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 16
↳Forward Instantiation Transformation
P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
one new Dependency Pair is created:
P(s(s(r'''''''''')), 0, s(s(s(r'''''''')))) -> P(s(s(r'''''''''')), s(s(r'''''''')), 0)
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 17
↳Forward Instantiation Transformation
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(s(s(r'''''''''')), s(s(s(r'''''''''''))), 0) -> P(0, s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(0)), s(s(s(s(n'''''''''')))), 0) -> P(0, s(s(s(n''''''''''))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 18
↳Forward Instantiation Transformation
P(s(s(0)), s(s(s(s(n'''''''''')))), 0) -> P(0, s(s(s(n''''''''''))), s(s(0)))
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(m'''''''', s(s(r'''''''''')), s(s(s(r''''''''''')))) -> P(m'''''''', s(s(r''''''''''')), s(s(r'''''''''')))
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 19
↳Forward Instantiation Transformation
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
P(s(s(0)), s(s(s(s(n'''''''''')))), 0) -> P(0, s(s(s(n''''''''''))), s(s(0)))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
one new Dependency Pair is created:
P(m'''''''', s(s(s(n''''''''))), s(s(0))) -> P(m'''''''', s(0), s(s(s(n''''''''))))
P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 20
↳Forward Instantiation Transformation
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
one new Dependency Pair is created:
P(s(r0''''''''), s(0), s(s(s(s(r''''''''''))))) -> P(s(r0''''''''), s(s(s(r''''''''''))), s(0))
P(s(s(r'''''''''''''')), s(0), s(s(s(s(r''''''''''''))))) -> P(s(s(r'''''''''''''')), s(s(s(r''''''''''''))), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 21
↳Forward Instantiation Transformation
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(s(r'''''''''''''')), s(0), s(s(s(s(r''''''''''''))))) -> P(s(s(r'''''''''''''')), s(s(s(r''''''''''''))), s(0))
P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
one new Dependency Pair is created:
P(s(s(r'''''''''''')), s(s(s(r''''''''''))), s(0)) -> P(s(s(r'''''''''''')), 0, s(s(s(r''''''''''))))
P(s(s(r'''''''''''''')), s(s(s(s(r'''''''''''''''')))), s(0)) -> P(s(s(r'''''''''''''')), 0, s(s(s(s(r'''''''''''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 22
↳Forward Instantiation Transformation
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
P(s(s(r'''''''''''''')), s(s(s(s(r'''''''''''''''')))), s(0)) -> P(s(s(r'''''''''''''')), 0, s(s(s(s(r'''''''''''''''')))))
P(s(s(r'''''''''''''')), s(0), s(s(s(s(r''''''''''''))))) -> P(s(s(r'''''''''''''')), s(s(s(r''''''''''''))), s(0))
P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
one new Dependency Pair is created:
P(s(s(r''''''''''')), 0, s(s(s(s(r''''''''''''''))))) -> P(s(s(r''''''''''')), s(s(s(r''''''''''''''))), 0)
P(s(s(s(r'''''''''''''''''))), 0, s(s(s(s(r''''''''''''''''))))) -> P(s(s(s(r'''''''''''''''''))), s(s(s(r''''''''''''''''))), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 23
↳Forward Instantiation Transformation
P(s(s(r'''''''''''''')), s(0), s(s(s(s(r''''''''''''))))) -> P(s(s(r'''''''''''''')), s(s(s(r''''''''''''))), s(0))
P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r'''''''''''''''''))), 0, s(s(s(s(r''''''''''''''''))))) -> P(s(s(s(r'''''''''''''''''))), s(s(s(r''''''''''''''''))), 0)
P(s(s(r'''''''''''''')), s(s(s(s(r'''''''''''''''')))), s(0)) -> P(s(s(r'''''''''''''')), 0, s(s(s(s(r'''''''''''''''')))))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0))), 0) -> P(0, s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r''''''''''''''''))), s(s(s(s(r''''''''''''''''')))), 0) -> P(0, s(s(s(r'''''''''''''''''))), s(s(s(r''''''''''''''''))))
P(s(s(s(s(n'''''''''''')))), s(s(s(0))), 0) -> P(0, s(s(0)), s(s(s(s(n'''''''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 24
↳Remaining Obligation(s)
P(s(s(s(s(n'''''''''''')))), s(s(s(0))), 0) -> P(0, s(s(0)), s(s(s(s(n'''''''''''')))))
P(s(r0''''''''''), s(s(s(s(r'''''''''''')))), s(s(0))) -> P(s(r0''''''''''), s(0), s(s(s(s(r'''''''''''')))))
P(m'''''''''', s(s(0)), s(s(s(s(n''''''''''))))) -> P(m'''''''''', s(s(s(n''''''''''))), s(s(0)))
P(m'''''''''', s(s(s(r''''''''''''''))), s(s(s(r'''''''''''0)))) -> P(m'''''''''', s(s(r'''''''''''0)), s(s(s(r''''''''''''''))))
P(s(s(s(r''''''''''''''''))), s(s(s(s(r''''''''''''''''')))), 0) -> P(0, s(s(s(r'''''''''''''''''))), s(s(s(r''''''''''''''''))))
P(s(s(s(r'''''''''''''''''))), 0, s(s(s(s(r''''''''''''''''))))) -> P(s(s(s(r'''''''''''''''''))), s(s(s(r''''''''''''''''))), 0)
P(s(s(r'''''''''''''')), s(s(s(s(r'''''''''''''''')))), s(0)) -> P(s(s(r'''''''''''''')), 0, s(s(s(s(r'''''''''''''''')))))
P(s(s(r'''''''''''''')), s(0), s(s(s(s(r''''''''''''))))) -> P(s(s(r'''''''''''''')), s(s(s(r''''''''''''))), s(0))
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost