R
↳Dependency Pair Analysis
P(m, n, s(r)) -> P(m, r, n)
P(m, s(n), 0) -> P(0, n, m)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
P(m, s(n), 0) -> P(0, n, m)
P(m, n, s(r)) -> P(m, r, n)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
two new Dependency Pairs are created:
P(m, n, s(r)) -> P(m, r, n)
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(m, s(n), 0) -> P(0, n, m)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
three new Dependency Pairs are created:
P(m, s(n), 0) -> P(0, n, m)
P(0, s(s(n'')), 0) -> P(0, s(n''), 0)
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(s(s(n'''')), s(0), 0) -> P(0, 0, s(s(n'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Argument Filtering and Ordering
P(0, s(s(n'')), 0) -> P(0, s(n''), 0)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
P(0, s(s(n'')), 0) -> P(0, s(n''), 0)
P(x1, x2, x3) -> P(x1, x2, x3)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Remaining Obligation(s)
P(s(s(n'''')), s(0), 0) -> P(0, 0, s(s(n'''')))
P(m'', s(r''), s(r0)) -> P(m'', r0, s(r''))
P(s(r0''), s(s(r'''')), 0) -> P(0, s(r''''), s(r0''))
P(m'', 0, s(s(n''))) -> P(m'', s(n''), 0)
p(m, n, s(r)) -> p(m, r, n)
p(m, s(n), 0) -> p(0, n, m)
p(m, 0, 0) -> m
innermost