f(empty,

f(cons(

g(

R

↳Dependency Pair Analysis

F(cons(x,k),l) -> G(k,l, cons(x,k))

G(a,b,c) -> F(a, cons(b,c))

Furthermore,

R

↳DPs

→DP Problem 1

↳Argument Filtering and Ordering

**G( a, b, c) -> F(a, cons(b, c))**

f(empty,l) ->l

f(cons(x,k),l) -> g(k,l, cons(x,k))

g(a,b,c) -> f(a, cons(b,c))

innermost

The following dependency pair can be strictly oriented:

F(cons(x,k),l) -> G(k,l, cons(x,k))

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:

trivial

resulting in one new DP problem.

Used Argument Filtering System:

G(x,_{1}x,_{2}x) ->_{3}x_{1}

F(x,_{1}x) ->_{2}x_{1}

cons(x,_{1}x) -> cons(_{2}x,_{1}x)_{2}

R

↳DPs

→DP Problem 1

↳AFS

→DP Problem 2

↳Dependency Graph

**G( a, b, c) -> F(a, cons(b, c))**

f(empty,l) ->l

f(cons(x,k),l) -> g(k,l, cons(x,k))

g(a,b,c) -> f(a, cons(b,c))

innermost

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes