Term Rewriting System R:
[l, x, k, a, b, c]
f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(cons(x, k), l) -> G(k, l, cons(x, k))
G(a, b, c) -> F(a, cons(b, c))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

G(a, b, c) -> F(a, cons(b, c))
F(cons(x, k), l) -> G(k, l, cons(x, k))


Rules:


f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))


Strategy:

innermost




The following dependency pair can be strictly oriented:

F(cons(x, k), l) -> G(k, l, cons(x, k))


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
G(x1, x2, x3) -> x1
F(x1, x2) -> x1
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:

G(a, b, c) -> F(a, cons(b, c))


Rules:


f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes