R
↳Dependency Pair Analysis
F(a, f(f(a, a), x)) -> F(f(a, a), f(a, f(a, x)))
F(a, f(f(a, a), x)) -> F(a, f(a, x))
F(a, f(f(a, a), x)) -> F(a, x)
R
↳DPs
→DP Problem 1
↳Semantic Labelling
F(a, f(f(a, a), x)) -> F(a, x)
F(a, f(f(a, a), x)) -> F(a, f(a, x))
f(a, f(f(a, a), x)) -> f(f(a, a), f(a, f(a, x)))
innermost
f(x0, x1) = 0 a = 1 F(x0, x1) = 1
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳Modular Removal of Rules
F10(a, f00(f11(a, a), x)) -> F10(a, f10(a, x))
F10(a, f00(f11(a, a), x)) -> F10(a, x)
f10(a, f00(f11(a, a), x)) -> f00(f11(a, a), f10(a, f10(a, x)))
f10(a, f01(f11(a, a), x)) -> f00(f11(a, a), f10(a, f11(a, x)))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f10(a, f01(f11(a, a), x)) -> f00(f11(a, a), f10(a, f11(a, x)))
f10(a, f00(f11(a, a), x)) -> f00(f11(a, a), f10(a, f10(a, x)))
POL(f_11(x1, x2)) = x1 + x2 POL(f_00(x1, x2)) = x1 + x2 POL(f_10(x1, x2)) = x1 + x2 POL(f_01(x1, x2)) = x1 + x2 POL(F_10(x1, x2)) = x1 + x2 POL(a) = 0
f10(a, f01(f11(a, a), x)) -> f00(f11(a, a), f10(a, f11(a, x)))
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 3
↳Modular Removal of Rules
F10(a, f00(f11(a, a), x)) -> F10(a, x)
F10(a, f00(f11(a, a), x)) -> F10(a, f10(a, x))
f10(a, f00(f11(a, a), x)) -> f00(f11(a, a), f10(a, f10(a, x)))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f10(a, f00(f11(a, a), x)) -> f00(f11(a, a), f10(a, f10(a, x)))
POL(f_11(x1, x2)) = x1 + x2 POL(f_00(x1, x2)) = 1 + x1 + x2 POL(f_10(x1, x2)) = x1 + x2 POL(F_10(x1, x2)) = x1 + x2 POL(a) = 0
F10(a, f00(f11(a, a), x)) -> F10(a, x)
F10(a, f00(f11(a, a), x)) -> F10(a, f10(a, x))
Innermost Termination of R successfully shown.
Duration:
0:00 minutes