R
↳Dependency Pair Analysis
-'(s(x), s(y)) -> -'(x, y)
F(s(x)) -> -'(s(x), g(f(x)))
F(s(x)) -> G(f(x))
F(s(x)) -> F(x)
G(s(x)) -> -'(s(x), f(g(x)))
G(s(x)) -> F(g(x))
G(s(x)) -> G(x)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳Neg POLO
-'(s(x), s(y)) -> -'(x, y)
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 3
↳Size-Change Principle
→DP Problem 2
↳Neg POLO
-'(s(x), s(y)) -> -'(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Negative Polynomial Order
G(s(x)) -> G(x)
F(s(x)) -> F(x)
G(s(x)) -> F(g(x))
F(s(x)) -> G(f(x))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
G(s(x)) -> G(x)
F(s(x)) -> F(x)
F(s(x)) -> G(f(x))
f(0) -> 0
-(s(x), s(y)) -> -(x, y)
g(0) -> s(0)
f(s(x)) -> -(s(x), g(f(x)))
-(0, s(y)) -> 0
-(x, 0) -> x
g(s(x)) -> -(s(x), f(g(x)))
POL( G(x1) ) = x1
POL( s(x1) ) = x1 + 1
POL( F(x1) ) = x1
POL( f(x1) ) = x1
POL( g(x1) ) = x1 + 1
POL( 0 ) = 0
POL( -(x1, x2) ) = x1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Neg POLO
→DP Problem 4
↳Dependency Graph
G(s(x)) -> F(g(x))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost