R
↳Dependency Pair Analysis
-'(s(x), s(y)) -> -'(x, y)
F(s(x)) -> -'(s(x), g(f(x)))
F(s(x)) -> G(f(x))
F(s(x)) -> F(x)
G(s(x)) -> -'(s(x), f(g(x)))
G(s(x)) -> F(g(x))
G(s(x)) -> G(x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
-'(s(x), s(y)) -> -'(x, y)
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
one new Dependency Pair is created:
-'(s(x), s(y)) -> -'(x, y)
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
one new Dependency Pair is created:
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Nar
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
POL(-'(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
G(s(x)) -> G(x)
F(s(x)) -> F(x)
G(s(x)) -> F(g(x))
F(s(x)) -> G(f(x))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
two new Dependency Pairs are created:
F(s(x)) -> G(f(x))
F(s(0)) -> G(0)
F(s(s(x''))) -> G(-(s(x''), g(f(x''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Narrowing Transformation
F(s(s(x''))) -> G(-(s(x''), g(f(x''))))
F(s(x)) -> F(x)
G(s(x)) -> F(g(x))
G(s(x)) -> G(x)
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
two new Dependency Pairs are created:
G(s(x)) -> F(g(x))
G(s(0)) -> F(s(0))
G(s(s(x''))) -> F(-(s(x''), f(g(x''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
G(s(s(x''))) -> F(-(s(x''), f(g(x''))))
F(s(x)) -> F(x)
G(s(0)) -> F(s(0))
G(s(x)) -> G(x)
F(s(s(x''))) -> G(-(s(x''), g(f(x''))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
two new Dependency Pairs are created:
F(s(s(x''))) -> G(-(s(x''), g(f(x''))))
F(s(s(0))) -> G(-(s(0), g(0)))
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Rewriting Transformation
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
G(s(0)) -> F(s(0))
G(s(x)) -> G(x)
F(s(s(0))) -> G(-(s(0), g(0)))
F(s(x)) -> F(x)
G(s(s(x''))) -> F(-(s(x''), f(g(x''))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
one new Dependency Pair is created:
F(s(s(0))) -> G(-(s(0), g(0)))
F(s(s(0))) -> G(-(s(0), s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Rewriting Transformation
G(s(s(x''))) -> F(-(s(x''), f(g(x''))))
F(s(s(0))) -> G(-(s(0), s(0)))
F(s(x)) -> F(x)
G(s(0)) -> F(s(0))
G(s(x)) -> G(x)
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
one new Dependency Pair is created:
F(s(s(0))) -> G(-(s(0), s(0)))
F(s(s(0))) -> G(-(0, 0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Rewriting Transformation
F(s(s(0))) -> G(-(0, 0))
G(s(0)) -> F(s(0))
G(s(x)) -> G(x)
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(x)) -> F(x)
G(s(s(x''))) -> F(-(s(x''), f(g(x''))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
one new Dependency Pair is created:
F(s(s(0))) -> G(-(0, 0))
F(s(s(0))) -> G(0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 11
↳Narrowing Transformation
G(s(s(x''))) -> F(-(s(x''), f(g(x''))))
G(s(x)) -> G(x)
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(x)) -> F(x)
G(s(0)) -> F(s(0))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
two new Dependency Pairs are created:
G(s(s(x''))) -> F(-(s(x''), f(g(x''))))
G(s(s(0))) -> F(-(s(0), f(s(0))))
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Rewriting Transformation
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
G(s(s(0))) -> F(-(s(0), f(s(0))))
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(x)) -> F(x)
G(s(0)) -> F(s(0))
G(s(x)) -> G(x)
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
one new Dependency Pair is created:
G(s(s(0))) -> F(-(s(0), f(s(0))))
G(s(s(0))) -> F(-(s(0), -(s(0), g(f(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 13
↳Rewriting Transformation
G(s(s(0))) -> F(-(s(0), -(s(0), g(f(0)))))
G(s(0)) -> F(s(0))
G(s(x)) -> G(x)
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(x)) -> F(x)
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
one new Dependency Pair is created:
G(s(s(0))) -> F(-(s(0), -(s(0), g(f(0)))))
G(s(s(0))) -> F(-(s(0), -(s(0), g(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 14
↳Rewriting Transformation
G(s(s(0))) -> F(-(s(0), -(s(0), g(0))))
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
G(s(x)) -> G(x)
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(x)) -> F(x)
G(s(0)) -> F(s(0))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
one new Dependency Pair is created:
G(s(s(0))) -> F(-(s(0), -(s(0), g(0))))
G(s(s(0))) -> F(-(s(0), -(s(0), s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 15
↳Rewriting Transformation
G(s(s(0))) -> F(-(s(0), -(s(0), s(0))))
G(s(0)) -> F(s(0))
G(s(x)) -> G(x)
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(x)) -> F(x)
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
one new Dependency Pair is created:
G(s(s(0))) -> F(-(s(0), -(s(0), s(0))))
G(s(s(0))) -> F(-(s(0), -(0, 0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 16
↳Rewriting Transformation
G(s(s(0))) -> F(-(s(0), -(0, 0)))
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
G(s(x)) -> G(x)
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(x)) -> F(x)
G(s(0)) -> F(s(0))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
one new Dependency Pair is created:
G(s(s(0))) -> F(-(s(0), -(0, 0)))
G(s(s(0))) -> F(-(s(0), 0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 17
↳Rewriting Transformation
G(s(s(0))) -> F(-(s(0), 0))
G(s(0)) -> F(s(0))
G(s(x)) -> G(x)
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(x)) -> F(x)
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
one new Dependency Pair is created:
G(s(s(0))) -> F(-(s(0), 0))
G(s(s(0))) -> F(s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 18
↳Forward Instantiation Transformation
G(s(s(0))) -> F(s(0))
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
G(s(x)) -> G(x)
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(x)) -> F(x)
G(s(0)) -> F(s(0))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
two new Dependency Pairs are created:
F(s(x)) -> F(x)
F(s(s(x''))) -> F(s(x''))
F(s(s(s(s(x'''))))) -> F(s(s(s(x'''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 19
↳Forward Instantiation Transformation
F(s(s(s(s(x'''))))) -> F(s(s(s(x'''))))
F(s(s(x''))) -> F(s(x''))
G(s(x)) -> G(x)
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
two new Dependency Pairs are created:
G(s(x)) -> G(x)
G(s(s(x''))) -> G(s(x''))
G(s(s(s(s(x'''))))) -> G(s(s(s(x'''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 20
↳Forward Instantiation Transformation
G(s(s(s(s(x'''))))) -> G(s(s(s(x'''))))
G(s(s(x''))) -> G(s(x''))
F(s(s(x''))) -> F(s(x''))
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(s(s(s(x'''))))) -> F(s(s(s(x'''))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
three new Dependency Pairs are created:
F(s(s(x''))) -> F(s(x''))
F(s(s(s(s(x''''))))) -> F(s(s(s(x''''))))
F(s(s(s(x'''')))) -> F(s(s(x'''')))
F(s(s(s(s(s(x''''')))))) -> F(s(s(s(s(x''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 21
↳Forward Instantiation Transformation
F(s(s(s(s(s(x''''')))))) -> F(s(s(s(s(x''''')))))
F(s(s(s(x'''')))) -> F(s(s(x'''')))
F(s(s(s(s(x''''))))) -> F(s(s(s(x''''))))
F(s(s(s(s(x'''))))) -> F(s(s(s(x'''))))
G(s(s(x''))) -> G(s(x''))
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
G(s(s(s(s(x'''))))) -> G(s(s(s(x'''))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
three new Dependency Pairs are created:
G(s(s(x''))) -> G(s(x''))
G(s(s(s(s(x''''))))) -> G(s(s(s(x''''))))
G(s(s(s(x'''')))) -> G(s(s(x'''')))
G(s(s(s(s(s(x''''')))))) -> G(s(s(s(s(x''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 22
↳Polynomial Ordering
G(s(s(s(s(s(x''''')))))) -> G(s(s(s(s(x''''')))))
G(s(s(s(x'''')))) -> G(s(s(x'''')))
G(s(s(s(s(x''''))))) -> G(s(s(s(x''''))))
G(s(s(s(s(x'''))))) -> G(s(s(s(x'''))))
F(s(s(s(x'''')))) -> F(s(s(x'''')))
F(s(s(s(s(x''''))))) -> F(s(s(s(x''''))))
F(s(s(s(s(x'''))))) -> F(s(s(s(x'''))))
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(s(s(s(s(x''''')))))) -> F(s(s(s(s(x''''')))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost
G(s(s(s(s(s(x''''')))))) -> G(s(s(s(s(x''''')))))
G(s(s(s(x'''')))) -> G(s(s(x'''')))
G(s(s(s(s(x''''))))) -> G(s(s(s(x''''))))
G(s(s(s(s(x'''))))) -> G(s(s(s(x'''))))
F(s(s(s(x'''')))) -> F(s(s(x'''')))
F(s(s(s(s(x''''))))) -> F(s(s(s(x''''))))
F(s(s(s(s(x'''))))) -> F(s(s(s(x'''))))
G(s(s(s(x')))) -> F(-(s(s(x')), f(-(s(x'), f(g(x'))))))
F(s(s(s(x')))) -> G(-(s(s(x')), g(-(s(x'), g(f(x'))))))
F(s(s(s(s(s(x''''')))))) -> F(s(s(s(s(x''''')))))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
POL(0) = 0 POL(g(x1)) = 1 + x1 POL(G(x1)) = x1 POL(s(x1)) = 1 + x1 POL(-(x1, x2)) = x1 POL(f(x1)) = x1 POL(F(x1)) = x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 23
↳Dependency Graph
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))
innermost