TRS
↳Dependency Pair Analysis
F(s(x)) -> F(f(p(s(x))))
F(s(x)) -> F(p(s(x)))
F(s(x)) -> P(s(x))
TRS
↳DPs
→DP Problem 1
↳Rewriting Transformation
F(s(x)) -> F(p(s(x)))
F(s(x)) -> F(f(p(s(x))))
f(s(x)) -> s(f(f(p(s(x)))))
f(0) -> 0
p(s(x)) -> x
innermost
one new Dependency Pair is created:
F(s(x)) -> F(f(p(s(x))))
F(s(x)) -> F(f(x))
TRS
↳DPs
→DP Problem 1
↳Rw
→DP Problem 2
↳Rewriting Transformation
F(s(x)) -> F(f(x))
F(s(x)) -> F(p(s(x)))
f(s(x)) -> s(f(f(p(s(x)))))
f(0) -> 0
p(s(x)) -> x
innermost
one new Dependency Pair is created:
F(s(x)) -> F(p(s(x)))
F(s(x)) -> F(x)
TRS
↳DPs
→DP Problem 1
↳Rw
→DP Problem 2
↳Rw
...
→DP Problem 3
↳Negative Polynomial Order
F(s(x)) -> F(x)
F(s(x)) -> F(f(x))
f(s(x)) -> s(f(f(p(s(x)))))
f(0) -> 0
p(s(x)) -> x
innermost
F(s(x)) -> F(x)
F(s(x)) -> F(f(x))
f(0) -> 0
p(s(x)) -> x
f(s(x)) -> s(f(f(p(s(x)))))
POL( F(x1) ) = x1
POL( s(x1) ) = x1 + 1
POL( f(x1) ) = x1
POL( 0 ) = 0
POL( p(x1) ) = max{0, x1 - 1}
TRS
↳DPs
→DP Problem 1
↳Rw
→DP Problem 2
↳Rw
...
→DP Problem 4
↳Dependency Graph
f(s(x)) -> s(f(f(p(s(x)))))
f(0) -> 0
p(s(x)) -> x
innermost