R
↳Dependency Pair Analysis
LEQ(s(x), s(y)) -> LEQ(x, y)
-'(s(x), s(y)) -> -'(x, y)
MOD(s(x), s(y)) -> IF(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
MOD(s(x), s(y)) -> LEQ(y, x)
MOD(s(x), s(y)) -> MOD(-(s(x), s(y)), s(y))
MOD(s(x), s(y)) -> -'(s(x), s(y))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳Remaining
LEQ(s(x), s(y)) -> LEQ(x, y)
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
LEQ(s(x), s(y)) -> LEQ(x, y)
trivial
LEQ(x1, x2) -> LEQ(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳Remaining
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳Remaining
-'(s(x), s(y)) -> -'(x, y)
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
-'(s(x), s(y)) -> -'(x, y)
trivial
-'(x1, x2) -> -'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Remaining
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Remaining Obligation(s)
MOD(s(x), s(y)) -> MOD(-(s(x), s(y)), s(y))
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost