R
↳Dependency Pair Analysis
LEQ(s(x), s(y)) -> LEQ(x, y)
-'(s(x), s(y)) -> -'(x, y)
MOD(s(x), s(y)) -> IF(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
MOD(s(x), s(y)) -> LEQ(y, x)
MOD(s(x), s(y)) -> MOD(-(s(x), s(y)), s(y))
MOD(s(x), s(y)) -> -'(s(x), s(y))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Rw
LEQ(s(x), s(y)) -> LEQ(x, y)
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
one new Dependency Pair is created:
LEQ(s(x), s(y)) -> LEQ(x, y)
LEQ(s(s(x'')), s(s(y''))) -> LEQ(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Rw
LEQ(s(s(x'')), s(s(y''))) -> LEQ(s(x''), s(y''))
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
one new Dependency Pair is created:
LEQ(s(s(x'')), s(s(y''))) -> LEQ(s(x''), s(y''))
LEQ(s(s(s(x''''))), s(s(s(y'''')))) -> LEQ(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Rw
LEQ(s(s(s(x''''))), s(s(s(y'''')))) -> LEQ(s(s(x'''')), s(s(y'''')))
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
LEQ(s(s(s(x''''))), s(s(s(y'''')))) -> LEQ(s(s(x'''')), s(s(y'''')))
LEQ(x1, x2) -> LEQ(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Rw
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Rw
-'(s(x), s(y)) -> -'(x, y)
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
one new Dependency Pair is created:
-'(s(x), s(y)) -> -'(x, y)
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳Rw
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
one new Dependency Pair is created:
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 3
↳Rw
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
-'(x1, x2) -> -'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳Rw
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Rewriting Transformation
MOD(s(x), s(y)) -> MOD(-(s(x), s(y)), s(y))
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
one new Dependency Pair is created:
MOD(s(x), s(y)) -> MOD(-(s(x), s(y)), s(y))
MOD(s(x), s(y)) -> MOD(-(x, y), s(y))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Rw
→DP Problem 10
↳Narrowing Transformation
MOD(s(x), s(y)) -> MOD(-(x, y), s(y))
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
two new Dependency Pairs are created:
MOD(s(x), s(y)) -> MOD(-(x, y), s(y))
MOD(s(x''), s(0)) -> MOD(x'', s(0))
MOD(s(s(x'')), s(s(y''))) -> MOD(-(x'', y''), s(s(y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 11
↳Argument Filtering and Ordering
MOD(s(x''), s(0)) -> MOD(x'', s(0))
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
MOD(s(x''), s(0)) -> MOD(x'', s(0))
MOD(x1, x2) -> MOD(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 13
↳Dependency Graph
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 12
↳Argument Filtering and Ordering
MOD(s(s(x'')), s(s(y''))) -> MOD(-(x'', y''), s(s(y'')))
leq(0, y) -> true
leq(s(x), 0) -> false
leq(s(x), s(y)) -> leq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
innermost
MOD(s(s(x'')), s(s(y''))) -> MOD(-(x'', y''), s(s(y'')))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
MOD(x1, x2) -> MOD(x1, x2)
s(x1) -> s(x1)
-(x1, x2) -> x1