Term Rewriting System R:
[x, y, z]
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
if(true, x, y) -> x
if(false, x, y) -> y
if(true, x, y) -> true
if(false, x, y) -> false
odd(0) -> false
odd(s(0)) -> true
odd(s(s(x))) -> odd(x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
pow(x, y) -> f(x, y, s(0))
f(x, 0, z) -> z
f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

-'(s(x), s(y)) -> -'(x, y)
*'(x, s(y)) -> *'(x, y)
ODD(s(s(x))) -> ODD(x)
HALF(s(s(x))) -> HALF(x)
POW(x, y) -> F(x, y, s(0))
F(x, s(y), z) -> IF(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))
F(x, s(y), z) -> ODD(s(y))
F(x, s(y), z) -> F(x, y, *(x, z))
F(x, s(y), z) -> *'(x, z)
F(x, s(y), z) -> F(*(x, x), half(s(y)), z)
F(x, s(y), z) -> *'(x, x)
F(x, s(y), z) -> HALF(s(y))

Furthermore, R contains five SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pair:

-'(s(x), s(y)) -> -'(x, y)


Rules:


-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
if(true, x, y) -> x
if(false, x, y) -> y
if(true, x, y) -> true
if(false, x, y) -> false
odd(0) -> false
odd(s(0)) -> true
odd(s(s(x))) -> odd(x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
pow(x, y) -> f(x, y, s(0))
f(x, 0, z) -> z
f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

-'(s(x), s(y)) -> -'(x, y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
-'(x1, x2) -> -'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 6
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pair:


Rules:


-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
if(true, x, y) -> x
if(false, x, y) -> y
if(true, x, y) -> true
if(false, x, y) -> false
odd(0) -> false
odd(s(0)) -> true
odd(s(s(x))) -> odd(x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
pow(x, y) -> f(x, y, s(0))
f(x, 0, z) -> z
f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pair:

*'(x, s(y)) -> *'(x, y)


Rules:


-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
if(true, x, y) -> x
if(false, x, y) -> y
if(true, x, y) -> true
if(false, x, y) -> false
odd(0) -> false
odd(s(0)) -> true
odd(s(s(x))) -> odd(x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
pow(x, y) -> f(x, y, s(0))
f(x, 0, z) -> z
f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

*'(x, s(y)) -> *'(x, y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 7
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pair:


Rules:


-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
if(true, x, y) -> x
if(false, x, y) -> y
if(true, x, y) -> true
if(false, x, y) -> false
odd(0) -> false
odd(s(0)) -> true
odd(s(s(x))) -> odd(x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
pow(x, y) -> f(x, y, s(0))
f(x, 0, z) -> z
f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pair:

ODD(s(s(x))) -> ODD(x)


Rules:


-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
if(true, x, y) -> x
if(false, x, y) -> y
if(true, x, y) -> true
if(false, x, y) -> false
odd(0) -> false
odd(s(0)) -> true
odd(s(s(x))) -> odd(x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
pow(x, y) -> f(x, y, s(0))
f(x, 0, z) -> z
f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ODD(s(s(x))) -> ODD(x)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
ODD(x1) -> ODD(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 8
Dependency Graph
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pair:


Rules:


-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
if(true, x, y) -> x
if(false, x, y) -> y
if(true, x, y) -> true
if(false, x, y) -> false
odd(0) -> false
odd(s(0)) -> true
odd(s(s(x))) -> odd(x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
pow(x, y) -> f(x, y, s(0))
f(x, 0, z) -> z
f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 5
AFS


Dependency Pair:

HALF(s(s(x))) -> HALF(x)


Rules:


-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
if(true, x, y) -> x
if(false, x, y) -> y
if(true, x, y) -> true
if(false, x, y) -> false
odd(0) -> false
odd(s(0)) -> true
odd(s(s(x))) -> odd(x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
pow(x, y) -> f(x, y, s(0))
f(x, 0, z) -> z
f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

HALF(s(s(x))) -> HALF(x)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
HALF(x1) -> HALF(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 9
Dependency Graph
       →DP Problem 5
AFS


Dependency Pair:


Rules:


-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
if(true, x, y) -> x
if(false, x, y) -> y
if(true, x, y) -> true
if(false, x, y) -> false
odd(0) -> false
odd(s(0)) -> true
odd(s(s(x))) -> odd(x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
pow(x, y) -> f(x, y, s(0))
f(x, 0, z) -> z
f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Argument Filtering and Ordering


Dependency Pairs:

F(x, s(y), z) -> F(*(x, x), half(s(y)), z)
F(x, s(y), z) -> F(x, y, *(x, z))


Rules:


-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
if(true, x, y) -> x
if(false, x, y) -> y
if(true, x, y) -> true
if(false, x, y) -> false
odd(0) -> false
odd(s(0)) -> true
odd(s(s(x))) -> odd(x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
pow(x, y) -> f(x, y, s(0))
f(x, 0, z) -> z
f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

F(x, s(y), z) -> F(x, y, *(x, z))


The following usable rules for innermost can be oriented:

*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
half > 0
F > 0
+ > 0
* > 0
s > 0

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2, x3) -> F(x1, x2, x3)
s(x1) -> s(x1)
*(x1, x2) -> x1
half(x1) -> x1
+(x1, x2) -> x1


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 10
Remaining Obligation(s)




The following remains to be proven:
Dependency Pair:

F(x, s(y), z) -> F(*(x, x), half(s(y)), z)


Rules:


-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
if(true, x, y) -> x
if(false, x, y) -> y
if(true, x, y) -> true
if(false, x, y) -> false
odd(0) -> false
odd(s(0)) -> true
odd(s(s(x))) -> odd(x)
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
pow(x, y) -> f(x, y, s(0))
f(x, 0, z) -> z
f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:02 minutes