Term Rewriting System R:
[z, x, y]
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

H(z, e(x)) -> H(c(z), d(z, x))
H(z, e(x)) -> D(z, x)
D(z, g(x, y)) -> G(e(x), d(z, y))
D(z, g(x, y)) -> D(z, y)
D(c(z), g(g(x, y), 0)) -> G(d(c(z), g(x, y)), d(z, g(x, y)))
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
D(c(z), g(g(x, y), 0)) -> D(z, g(x, y))
G(e(x), e(y)) -> G(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules


Dependency Pair:

G(e(x), e(y)) -> G(x, y)


Rules:


h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))


Strategy:

innermost




As we are in the innermost case, we can delete all 5 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 4
Size-Change Principle
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules


Dependency Pair:

G(e(x), e(y)) -> G(x, y)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. G(e(x), e(y)) -> G(x, y)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
e(x1) -> e(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
Usable Rules (Innermost)
       →DP Problem 3
UsableRules


Dependency Pairs:

D(c(z), g(g(x, y), 0)) -> D(z, g(x, y))
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
D(z, g(x, y)) -> D(z, y)


Rules:


h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))


Strategy:

innermost




As we are in the innermost case, we can delete all 5 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
           →DP Problem 5
Size-Change Principle
       →DP Problem 3
UsableRules


Dependency Pairs:

D(c(z), g(g(x, y), 0)) -> D(z, g(x, y))
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
D(z, g(x, y)) -> D(z, y)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. D(c(z), g(g(x, y), 0)) -> D(z, g(x, y))
  2. D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
  3. D(z, g(x, y)) -> D(z, y)
and get the following Size-Change Graph(s):
{1, 2, 3} , {1, 2, 3}
1>1
2>2
{1, 2, 3} , {1, 2, 3}
1=1
2>2

which lead(s) to this/these maximal multigraph(s):
{1, 2, 3} , {1, 2, 3}
1=1
2>2
{1, 2, 3} , {1, 2, 3}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
c(x1) -> c(x1)
g(x1, x2) -> g(x1, x2)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
Usable Rules (Innermost)


Dependency Pair:

H(z, e(x)) -> H(c(z), d(z, x))


Rules:


h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))


Strategy:

innermost




As we are in the innermost case, we can delete all 1 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 6
Narrowing Transformation


Dependency Pair:

H(z, e(x)) -> H(c(z), d(z, x))


Rules:


g(e(x), e(y)) -> e(g(x, y))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

H(z, e(x)) -> H(c(z), d(z, x))
three new Dependency Pairs are created:

H(z'', e(g(0, 0))) -> H(c(z''), e(0))
H(z'', e(g(x'', y'))) -> H(c(z''), g(e(x''), d(z'', y')))
H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 6
Nar
             ...
               →DP Problem 7
Instantiation Transformation


Dependency Pairs:

H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))
H(z'', e(g(x'', y'))) -> H(c(z''), g(e(x''), d(z'', y')))


Rules:


g(e(x), e(y)) -> e(g(x, y))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

H(z'', e(g(x'', y'))) -> H(c(z''), g(e(x''), d(z'', y')))
two new Dependency Pairs are created:

H(c(z''''), e(g(x''', y''))) -> H(c(c(z'''')), g(e(x'''), d(c(z''''), y'')))
H(c(c(z'''')), e(g(x''', y''))) -> H(c(c(c(z''''))), g(e(x'''), d(c(c(z'''')), y'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 6
Nar
             ...
               →DP Problem 8
Instantiation Transformation


Dependency Pairs:

H(c(c(z'''')), e(g(x''', y''))) -> H(c(c(c(z''''))), g(e(x'''), d(c(c(z'''')), y'')))
H(c(z''''), e(g(x''', y''))) -> H(c(c(z'''')), g(e(x'''), d(c(z''''), y'')))
H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))


Rules:


g(e(x), e(y)) -> e(g(x, y))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))
three new Dependency Pairs are created:

H(c(c(z'''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''))), g(d(c(c(z'''')), g(x''', y'')), d(c(z''''), g(x''', y''))))
H(c(c(z'''''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''''))), g(d(c(c(z'''''')), g(x''', y'')), d(c(z''''''), g(x''', y''))))
H(c(c(c(z''''''))), e(g(g(x''', y''), 0))) -> H(c(c(c(c(z'''''')))), g(d(c(c(c(z''''''))), g(x''', y'')), d(c(c(z'''''')), g(x''', y''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 6
Nar
             ...
               →DP Problem 9
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

H(c(c(c(z''''''))), e(g(g(x''', y''), 0))) -> H(c(c(c(c(z'''''')))), g(d(c(c(c(z''''''))), g(x''', y'')), d(c(c(z'''''')), g(x''', y''))))
H(c(c(z'''''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''''))), g(d(c(c(z'''''')), g(x''', y'')), d(c(z''''''), g(x''', y''))))
H(c(c(z'''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''))), g(d(c(c(z'''')), g(x''', y'')), d(c(z''''), g(x''', y''))))
H(c(z''''), e(g(x''', y''))) -> H(c(c(z'''')), g(e(x'''), d(c(z''''), y'')))
H(c(c(z'''')), e(g(x''', y''))) -> H(c(c(c(z''''))), g(e(x'''), d(c(c(z'''')), y'')))


Rules:


g(e(x), e(y)) -> e(g(x, y))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))


Strategy:

innermost



The Proof could not be continued due to a Timeout.
Innermost Termination of R could not be shown.
Duration:
1:00 minutes