R
↳Dependency Pair Analysis
H(z, e(x)) -> H(c(z), d(z, x))
H(z, e(x)) -> D(z, x)
D(z, g(x, y)) -> G(e(x), d(z, y))
D(z, g(x, y)) -> D(z, y)
D(c(z), g(g(x, y), 0)) -> G(d(c(z), g(x, y)), d(z, g(x, y)))
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
D(c(z), g(g(x, y), 0)) -> D(z, g(x, y))
G(e(x), e(y)) -> G(x, y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
G(e(x), e(y)) -> G(x, y)
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
G(e(x), e(y)) -> G(x, y)
POL(G(x1, x2)) = x1 + x2 POL(e(x1)) = 1 + x1
G(x1, x2) -> G(x1, x2)
e(x1) -> e(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
D(c(z), g(g(x, y), 0)) -> D(z, g(x, y))
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
D(z, g(x, y)) -> D(z, y)
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
D(c(z), g(g(x, y), 0)) -> D(z, g(x, y))
g(e(x), e(y)) -> e(g(x, y))
POL(c(x1)) = 1 + x1 POL(0) = 0 POL(g(x1, x2)) = x1 + x2 POL(e(x1)) = x1 POL(D(x1, x2)) = 1 + x1 + x2
D(x1, x2) -> D(x1, x2)
c(x1) -> c(x1)
g(x1, x2) -> g(x1, x2)
e(x1) -> e(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
D(z, g(x, y)) -> D(z, y)
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
D(z, g(x, y)) -> D(z, y)
g(e(x), e(y)) -> e(g(x, y))
POL(c(x1)) = 1 + x1 POL(0) = 0 POL(g(x1, x2)) = 1 + x1 + x2 POL(e(x1)) = x1 POL(D(x1, x2)) = 1 + x1 + x2
D(x1, x2) -> D(x1, x2)
g(x1, x2) -> g(x1, x2)
c(x1) -> c(x1)
e(x1) -> e(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳AFS
...
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳Nar
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Narrowing Transformation
H(z, e(x)) -> H(c(z), d(z, x))
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
three new Dependency Pairs are created:
H(z, e(x)) -> H(c(z), d(z, x))
H(z'', e(g(0, 0))) -> H(c(z''), e(0))
H(z'', e(g(x'', y'))) -> H(c(z''), g(e(x''), d(z'', y')))
H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 7
↳Instantiation Transformation
H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))
H(z'', e(g(x'', y'))) -> H(c(z''), g(e(x''), d(z'', y')))
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
two new Dependency Pairs are created:
H(z'', e(g(x'', y'))) -> H(c(z''), g(e(x''), d(z'', y')))
H(c(z''''), e(g(x''', y''))) -> H(c(c(z'''')), g(e(x'''), d(c(z''''), y'')))
H(c(c(z'''')), e(g(x''', y''))) -> H(c(c(c(z''''))), g(e(x'''), d(c(c(z'''')), y'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 7
↳Inst
...
→DP Problem 8
↳Instantiation Transformation
H(c(c(z'''')), e(g(x''', y''))) -> H(c(c(c(z''''))), g(e(x'''), d(c(c(z'''')), y'')))
H(c(z''''), e(g(x''', y''))) -> H(c(c(z'''')), g(e(x'''), d(c(z''''), y'')))
H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
three new Dependency Pairs are created:
H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))
H(c(c(z'''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''))), g(d(c(c(z'''')), g(x''', y'')), d(c(z''''), g(x''', y''))))
H(c(c(z'''''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''''))), g(d(c(c(z'''''')), g(x''', y'')), d(c(z''''''), g(x''', y''))))
H(c(c(c(z''''''))), e(g(g(x''', y''), 0))) -> H(c(c(c(c(z'''''')))), g(d(c(c(c(z''''''))), g(x''', y'')), d(c(c(z'''''')), g(x''', y''))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 7
↳Inst
...
→DP Problem 9
↳Remaining Obligation(s)
H(c(c(c(z''''''))), e(g(g(x''', y''), 0))) -> H(c(c(c(c(z'''''')))), g(d(c(c(c(z''''''))), g(x''', y'')), d(c(c(z'''''')), g(x''', y''))))
H(c(c(z'''''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''''))), g(d(c(c(z'''''')), g(x''', y'')), d(c(z''''''), g(x''', y''))))
H(c(c(z'''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''))), g(d(c(c(z'''')), g(x''', y'')), d(c(z''''), g(x''', y''))))
H(c(z''''), e(g(x''', y''))) -> H(c(c(z'''')), g(e(x'''), d(c(z''''), y'')))
H(c(c(z'''')), e(g(x''', y''))) -> H(c(c(c(z''''))), g(e(x'''), d(c(c(z'''')), y'')))
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost