R
↳Dependency Pair Analysis
H(z, e(x)) -> H(c(z), d(z, x))
H(z, e(x)) -> D(z, x)
D(z, g(x, y)) -> G(e(x), d(z, y))
D(z, g(x, y)) -> D(z, y)
D(c(z), g(g(x, y), 0)) -> G(d(c(z), g(x, y)), d(z, g(x, y)))
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
D(c(z), g(g(x, y), 0)) -> D(z, g(x, y))
G(e(x), e(y)) -> G(x, y)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Remaining
G(e(x), e(y)) -> G(x, y)
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
G(e(x), e(y)) -> G(x, y)
POL(G(x1, x2)) = x1 POL(e(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Remaining
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Remaining
D(c(z), g(g(x, y), 0)) -> D(z, g(x, y))
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
D(z, g(x, y)) -> D(z, y)
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
D(c(z), g(g(x, y), 0)) -> D(z, g(x, y))
g(e(x), e(y)) -> e(g(x, y))
POL(c(x1)) = 1 + x1 POL(0) = 0 POL(g(x1, x2)) = 0 POL(e(x1)) = 0 POL(D(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Polynomial Ordering
→DP Problem 3
↳Remaining
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
D(z, g(x, y)) -> D(z, y)
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
g(e(x), e(y)) -> e(g(x, y))
POL(c(x1)) = 0 POL(0) = 1 POL(g(x1, x2)) = x1 + x2 POL(e(x1)) = 0 POL(D(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Polo
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 3
↳Remaining
D(z, g(x, y)) -> D(z, y)
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
D(z, g(x, y)) -> D(z, y)
POL(g(x1, x2)) = 1 + x2 POL(D(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Polo
...
→DP Problem 7
↳Dependency Graph
→DP Problem 3
↳Remaining
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Remaining Obligation(s)
H(z, e(x)) -> H(c(z), d(z, x))
h(z, e(x)) -> h(c(z), d(z, x))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) -> e(g(x, y))
innermost