Term Rewriting System R:
[x, y, z]
:(:(x, y), z) -> :(x, :(y, z))
:(+(x, y), z) -> +(:(x, z), :(y, z))
:(z, +(x, f(y))) -> :(g(z, y), +(x, a))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

:'(:(x, y), z) -> :'(x, :(y, z))
:'(:(x, y), z) -> :'(y, z)
:'(+(x, y), z) -> :'(x, z)
:'(+(x, y), z) -> :'(y, z)
:'(z, +(x, f(y))) -> :'(g(z, y), +(x, a))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)


Dependency Pairs:

:'(+(x, y), z) -> :'(y, z)
:'(+(x, y), z) -> :'(x, z)
:'(:(x, y), z) -> :'(y, z)


Rules:


:(:(x, y), z) -> :(x, :(y, z))
:(+(x, y), z) -> +(:(x, z), :(y, z))
:(z, +(x, f(y))) -> :(g(z, y), +(x, a))


Strategy:

innermost




As we are in the innermost case, we can delete all 3 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
Size-Change Principle


Dependency Pairs:

:'(+(x, y), z) -> :'(y, z)
:'(+(x, y), z) -> :'(x, z)
:'(:(x, y), z) -> :'(y, z)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. :'(+(x, y), z) -> :'(y, z)
  2. :'(+(x, y), z) -> :'(x, z)
  3. :'(:(x, y), z) -> :'(y, z)
and get the following Size-Change Graph(s):
{1, 2, 3} , {1, 2, 3}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1, 2, 3} , {1, 2, 3}
1>1
2=2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
:(x1, x2) -> :(x1, x2)
+(x1, x2) -> +(x1, x2)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes