Term Rewriting System R:
[x, y, z, u, v]
if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v))
Innermost Termination of R to be shown.
   R
     ↳Dependency Pair Analysis
R contains the following Dependency Pairs: 
IF(if(x, y, z), u, v) -> IF(x, if(y, u, v), if(z, u, v))
IF(if(x, y, z), u, v) -> IF(y, u, v)
IF(if(x, y, z), u, v) -> IF(z, u, v)
Furthermore, R contains one SCC.
   R
     ↳DPs
       →DP Problem 1
         ↳Polynomial Ordering
Dependency Pairs:
IF(if(x, y, z), u, v) -> IF(z, u, v)
IF(if(x, y, z), u, v) -> IF(y, u, v)
Rule:
if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v))
Strategy:
innermost
The following dependency pairs can be strictly oriented:
IF(if(x, y, z), u, v) -> IF(z, u, v)
IF(if(x, y, z), u, v) -> IF(y, u, v)
There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
| POL(if(x1, x2, x3)) | =  1 + x2 + x3 | 
| POL(IF(x1, x2, x3)) | =  x1 | 
 resulting in one new DP problem.
   R
     ↳DPs
       →DP Problem 1
         ↳Polo
           →DP Problem 2
             ↳Dependency Graph
Dependency Pair:
Rule:
if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v))
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration: 
0:00 minutes