h(f(

g(

R

↳Dependency Pair Analysis

H(f(x),y) -> G(x,y)

G(x,y) -> H(x,y)

Furthermore,

R

↳DPs

→DP Problem 1

↳Argument Filtering and Ordering

**G( x, y) -> H(x, y)**

h(f(x),y) -> f(g(x,y))

g(x,y) -> h(x,y)

innermost

The following dependency pair can be strictly oriented:

G(x,y) -> H(x,y)

There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(G(x)_{1}, x_{2})= 1 + x _{1}+ x_{2}_{ }^{ }_{ }^{ }POL(H(x)_{1}, x_{2})= x _{1}+ x_{2}_{ }^{ }_{ }^{ }POL(f(x)_{1})= 1 + x _{1}_{ }^{ }

resulting in one new DP problem.

Used Argument Filtering System:

G(x,_{1}x) -> G(_{2}x,_{1}x)_{2}

H(x,_{1}x) -> H(_{2}x,_{1}x)_{2}

f(x) -> f(_{1}x)_{1}

R

↳DPs

→DP Problem 1

↳AFS

→DP Problem 2

↳Dependency Graph

**H(f( x), y) -> G(x, y)**

h(f(x),y) -> f(g(x,y))

g(x,y) -> h(x,y)

innermost

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes