R
↳Dependency Pair Analysis
H(f(x), y) -> G(x, y)
G(x, y) -> H(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
G(x, y) -> H(x, y)
H(f(x), y) -> G(x, y)
h(f(x), y) -> f(g(x, y))
g(x, y) -> h(x, y)
innermost
one new Dependency Pair is created:
G(x, y) -> H(x, y)
G(f(x''), y'') -> H(f(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
G(f(x''), y'') -> H(f(x''), y'')
H(f(x), y) -> G(x, y)
h(f(x), y) -> f(g(x, y))
g(x, y) -> h(x, y)
innermost
one new Dependency Pair is created:
H(f(x), y) -> G(x, y)
H(f(f(x'''')), y') -> G(f(x''''), y')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
H(f(f(x'''')), y') -> G(f(x''''), y')
G(f(x''), y'') -> H(f(x''), y'')
h(f(x), y) -> f(g(x, y))
g(x, y) -> h(x, y)
innermost
one new Dependency Pair is created:
G(f(x''), y'') -> H(f(x''), y'')
G(f(f(x'''''')), y'''') -> H(f(f(x'''''')), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
G(f(f(x'''''')), y'''') -> H(f(f(x'''''')), y'''')
H(f(f(x'''')), y') -> G(f(x''''), y')
h(f(x), y) -> f(g(x, y))
g(x, y) -> h(x, y)
innermost
one new Dependency Pair is created:
H(f(f(x'''')), y') -> G(f(x''''), y')
H(f(f(f(x''''''''))), y'') -> G(f(f(x'''''''')), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
H(f(f(f(x''''''''))), y'') -> G(f(f(x'''''''')), y'')
G(f(f(x'''''')), y'''') -> H(f(f(x'''''')), y'''')
h(f(x), y) -> f(g(x, y))
g(x, y) -> h(x, y)
innermost
H(f(f(f(x''''''''))), y'') -> G(f(f(x'''''''')), y'')
POL(G(x1, x2)) = x1 POL(H(x1, x2)) = x1 POL(f(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
G(f(f(x'''''')), y'''') -> H(f(f(x'''''')), y'''')
h(f(x), y) -> f(g(x, y))
g(x, y) -> h(x, y)
innermost