Term Rewriting System R:
[x, y]
p(s(x)) -> x
fact(0) -> s(0)
fact(s(x)) -> *(s(x), fact(p(s(x))))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FACT(s(x)) -> *'(s(x), fact(p(s(x))))
FACT(s(x)) -> FACT(p(s(x)))
FACT(s(x)) -> P(s(x))
*'(s(x), y) -> +'(*(x, y), y)
*'(s(x), y) -> *'(x, y)
+'(x, s(y)) -> +'(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules


Dependency Pair:

+'(x, s(y)) -> +'(x, y)


Rules:


p(s(x)) -> x
fact(0) -> s(0)
fact(s(x)) -> *(s(x), fact(p(s(x))))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




As we are in the innermost case, we can delete all 7 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 4
Size-Change Principle
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules


Dependency Pair:

+'(x, s(y)) -> +'(x, y)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. +'(x, s(y)) -> +'(x, y)
and get the following Size-Change Graph(s):
{1} , {1}
1=1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1=1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
Usable Rules (Innermost)
       →DP Problem 3
UsableRules


Dependency Pair:

*'(s(x), y) -> *'(x, y)


Rules:


p(s(x)) -> x
fact(0) -> s(0)
fact(s(x)) -> *(s(x), fact(p(s(x))))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




As we are in the innermost case, we can delete all 7 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
           →DP Problem 5
Size-Change Principle
       →DP Problem 3
UsableRules


Dependency Pair:

*'(s(x), y) -> *'(x, y)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. *'(s(x), y) -> *'(x, y)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2=2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
Usable Rules (Innermost)


Dependency Pair:

FACT(s(x)) -> FACT(p(s(x)))


Rules:


p(s(x)) -> x
fact(0) -> s(0)
fact(s(x)) -> *(s(x), fact(p(s(x))))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




As we are in the innermost case, we can delete all 6 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 6
Rewriting Transformation


Dependency Pair:

FACT(s(x)) -> FACT(p(s(x)))


Rule:


p(s(x)) -> x


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

FACT(s(x)) -> FACT(p(s(x)))
one new Dependency Pair is created:

FACT(s(x)) -> FACT(x)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 6
Rw
             ...
               →DP Problem 7
Usable Rules (Innermost)


Dependency Pair:

FACT(s(x)) -> FACT(x)


Rule:


p(s(x)) -> x


Strategy:

innermost




As we are in the innermost case, we can delete all 1 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 6
Rw
             ...
               →DP Problem 8
Size-Change Principle


Dependency Pair:

FACT(s(x)) -> FACT(x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. FACT(s(x)) -> FACT(x)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes