R
↳Dependency Pair Analysis
NOT(or(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(not(x))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(not(not(y)))
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(y)
R
↳DPs
→DP Problem 1
↳Modular Removal of Rules
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, y)) -> NOT(not(not(y)))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(not(x))
NOT(or(x, y)) -> NOT(not(not(x)))
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
POL(and(x1, x2)) = 1 + x1 + x2 POL(NOT(x1)) = x1 POL(or(x1, x2)) = 1 + x1 + x2 POL(not(x1)) = x1
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, y)) -> NOT(not(not(y)))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(not(x))
NOT(or(x, y)) -> NOT(not(not(x)))
Innermost Termination of R successfully shown.
Duration:
0:01 minutes