Term Rewriting System R:
[x, y]
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

NOT(or(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(not(x))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(not(not(y)))
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(y)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, y)) -> NOT(not(not(y)))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(not(x))
NOT(or(x, y)) -> NOT(not(not(x)))


Rules:


not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, y)) -> NOT(not(not(y)))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(not(x))
NOT(or(x, y)) -> NOT(not(not(x)))


Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(and(x1, x2))=  1 + x1 + x2  
  POL(NOT(x1))=  1 + x1  
  POL(or(x1, x2))=  1 + x1 + x2  
  POL(not(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:01 minutes