R
↳Dependency Pair Analysis
NOT(or(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(not(x))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(not(not(y)))
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(y)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, y)) -> NOT(not(not(y)))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(not(x))
NOT(or(x, y)) -> NOT(not(not(x)))
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))
innermost
four new Dependency Pairs are created:
NOT(or(x, y)) -> NOT(not(not(x)))
NOT(or(x'', y)) -> NOT(x'')
NOT(or(not(x''), y)) -> NOT(not(x''))
NOT(or(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
NOT(or(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x'', y)) -> NOT(x'')
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, y)) -> NOT(not(not(y)))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(y)
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))
innermost
three new Dependency Pairs are created:
NOT(or(x, y)) -> NOT(not(x))
NOT(or(not(x''), y)) -> NOT(x'')
NOT(or(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Narrowing Transformation
NOT(or(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(or(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x'', y)) -> NOT(x'')
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, y)) -> NOT(not(not(y)))
NOT(or(x, y)) -> NOT(x)
NOT(or(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))
innermost
four new Dependency Pairs are created:
NOT(or(x, y)) -> NOT(not(not(y)))
NOT(or(x, y')) -> NOT(y')
NOT(or(x, not(x''))) -> NOT(not(x''))
NOT(or(x, or(x'', y''))) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, and(x'', y''))) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Narrowing Transformation
NOT(or(x, and(x'', y''))) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, or(x'', y''))) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, y')) -> NOT(y')
NOT(or(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x'', y)) -> NOT(x'')
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, y)) -> NOT(x)
NOT(or(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))
innermost
three new Dependency Pairs are created:
NOT(or(x, y)) -> NOT(not(y))
NOT(or(x, not(x''))) -> NOT(x'')
NOT(or(x, or(x'', y''))) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(x, and(x'', y''))) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Narrowing Transformation
NOT(or(x, and(x'', y''))) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(or(x, or(x'', y''))) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(x, or(x'', y''))) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, y')) -> NOT(y')
NOT(or(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(or(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x'', y)) -> NOT(x'')
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(x))
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
NOT(or(x, and(x'', y''))) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))
innermost
four new Dependency Pairs are created:
NOT(and(x, y)) -> NOT(not(not(x)))
NOT(and(x'', y)) -> NOT(x'')
NOT(and(not(x''), y)) -> NOT(not(x''))
NOT(and(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(and(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 6
↳Narrowing Transformation
NOT(and(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(and(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, or(x'', y''))) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(x, and(x'', y''))) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, or(x'', y''))) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, y')) -> NOT(y')
NOT(or(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(and(x'', y)) -> NOT(x'')
NOT(or(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x'', y)) -> NOT(x'')
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(not(x))
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
NOT(or(x, and(x'', y''))) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))
innermost
three new Dependency Pairs are created:
NOT(and(x, y)) -> NOT(not(x))
NOT(and(not(x''), y)) -> NOT(x'')
NOT(and(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(and(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
NOT(and(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(and(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(x, and(x'', y''))) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(and(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, or(x'', y''))) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(x, and(x'', y''))) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, or(x'', y''))) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, y')) -> NOT(y')
NOT(or(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(and(x'', y)) -> NOT(x'')
NOT(or(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x'', y)) -> NOT(x'')
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
NOT(and(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))
innermost
four new Dependency Pairs are created:
NOT(and(x, y)) -> NOT(not(not(y)))
NOT(and(x, y')) -> NOT(y')
NOT(and(x, not(x''))) -> NOT(not(x''))
NOT(and(x, or(x'', y''))) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(and(x, and(x'', y''))) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 8
↳Narrowing Transformation
NOT(and(x, and(x'', y''))) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(and(x, or(x'', y''))) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(and(x, y')) -> NOT(y')
NOT(and(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(and(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, and(x'', y''))) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(and(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, or(x'', y''))) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(x, and(x'', y''))) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, or(x'', y''))) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, y')) -> NOT(y')
NOT(or(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(and(x'', y)) -> NOT(x'')
NOT(or(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x'', y)) -> NOT(x'')
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
NOT(and(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))
innermost
three new Dependency Pairs are created:
NOT(and(x, y)) -> NOT(not(y))
NOT(and(x, not(x''))) -> NOT(x'')
NOT(and(x, or(x'', y''))) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(and(x, and(x'', y''))) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 9
↳Remaining Obligation(s)
NOT(and(x, and(x'', y''))) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(and(x, or(x'', y''))) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(and(x, or(x'', y''))) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(and(x, y')) -> NOT(y')
NOT(and(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(and(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(and(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, and(x'', y''))) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(and(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, or(x'', y''))) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(x, and(x'', y''))) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, or(x'', y''))) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x, y')) -> NOT(y')
NOT(or(and(x'', y''), y)) -> NOT(or(not(not(not(x''))), not(not(not(y'')))))
NOT(and(x'', y)) -> NOT(x'')
NOT(or(or(x'', y''), y)) -> NOT(and(not(not(not(x''))), not(not(not(y'')))))
NOT(or(and(x'', y''), y)) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
NOT(or(or(x'', y''), y)) -> NOT(not(and(not(not(not(x''))), not(not(not(y''))))))
NOT(or(x'', y)) -> NOT(x'')
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
NOT(and(x, and(x'', y''))) -> NOT(not(or(not(not(not(x''))), not(not(not(y''))))))
not(not(x)) -> x
not(or(x, y)) -> and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) -> or(not(not(not(x))), not(not(not(y))))
innermost