R
↳Dependency Pair Analysis
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
one new Dependency Pair is created:
*'(x, +(y, z)) -> *'(x, y)
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
*'(x, +(y, z)) -> *'(x, z)
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
two new Dependency Pairs are created:
*'(x, +(y, z)) -> *'(x, z)
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(x', +(y, +(+(y'''', z''''), z''))) -> *'(x', +(+(y'''', z''''), z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
*'(x', +(y, +(+(y'''', z''''), z''))) -> *'(x', +(+(y'''', z''''), z''))
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
three new Dependency Pairs are created:
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
*'(x'''', +(+(+(y'''', z''''), z''0), z)) -> *'(x'''', +(+(y'''', z''''), z''0))
*'(x'''', +(+(y''0, +(y'''', z'''')), z)) -> *'(x'''', +(y''0, +(y'''', z'''')))
*'(x'''', +(+(y''', +(+(y'''''', z''''''), z'''')), z)) -> *'(x'''', +(y''', +(+(y'''''', z''''''), z'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
*'(x'''', +(+(y''', +(+(y'''''', z''''''), z'''')), z)) -> *'(x'''', +(y''', +(+(y'''''', z''''''), z'''')))
*'(x'''', +(+(y''0, +(y'''', z'''')), z)) -> *'(x'''', +(y''0, +(y'''', z'''')))
*'(x'''', +(+(+(y'''', z''''), z''0), z)) -> *'(x'''', +(+(y'''', z''''), z''0))
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(x', +(y, +(+(y'''', z''''), z''))) -> *'(x', +(+(y'''', z''''), z''))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
five new Dependency Pairs are created:
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(x'''', +(y, +(y''0, +(y'''', z'''')))) -> *'(x'''', +(y''0, +(y'''', z'''')))
*'(x'''', +(y, +(y''', +(+(y'''''', z''''''), z'''')))) -> *'(x'''', +(y''', +(+(y'''''', z''''''), z'''')))
*'(x''', +(y, +(+(+(y'''''', z''''''), z''0''), z'''))) -> *'(x''', +(+(+(y'''''', z''''''), z''0''), z'''))
*'(x''', +(y, +(+(y''0'', +(y'''''', z'''''')), z'''))) -> *'(x''', +(+(y''0'', +(y'''''', z'''''')), z'''))
*'(x''', +(y, +(+(y''''', +(+(y'''''''', z''''''''), z'''''')), z'''))) -> *'(x''', +(+(y''''', +(+(y'''''''', z''''''''), z'''''')), z'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
*'(x''', +(y, +(+(y''''', +(+(y'''''''', z''''''''), z'''''')), z'''))) -> *'(x''', +(+(y''''', +(+(y'''''''', z''''''''), z'''''')), z'''))
*'(x''', +(y, +(+(y''0'', +(y'''''', z'''''')), z'''))) -> *'(x''', +(+(y''0'', +(y'''''', z'''''')), z'''))
*'(x''', +(y, +(+(+(y'''''', z''''''), z''0''), z'''))) -> *'(x''', +(+(+(y'''''', z''''''), z''0''), z'''))
*'(x'''', +(y, +(y''', +(+(y'''''', z''''''), z'''')))) -> *'(x'''', +(y''', +(+(y'''''', z''''''), z'''')))
*'(x'''', +(y, +(y''0, +(y'''', z'''')))) -> *'(x'''', +(y''0, +(y'''', z'''')))
*'(x'''', +(+(y''0, +(y'''', z'''')), z)) -> *'(x'''', +(y''0, +(y'''', z'''')))
*'(x'''', +(+(+(y'''', z''''), z''0), z)) -> *'(x'''', +(+(y'''', z''''), z''0))
*'(x', +(y, +(+(y'''', z''''), z''))) -> *'(x', +(+(y'''', z''''), z''))
*'(x'''', +(+(y''', +(+(y'''''', z''''''), z'''')), z)) -> *'(x'''', +(y''', +(+(y'''''', z''''''), z'''')))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
nine new Dependency Pairs are created:
*'(x', +(y, +(+(y'''', z''''), z''))) -> *'(x', +(+(y'''', z''''), z''))
*'(x''', +(y, +(+(y''''0, z''''0), +(+(y'''''', z''''''), z'''0)))) -> *'(x''', +(+(y''''0, z''''0), +(+(y'''''', z''''''), z'''0)))
*'(x'', +(y, +(+(+(y'''''', z''''''), z''''0), z'''))) -> *'(x'', +(+(+(y'''''', z''''''), z''''0), z'''))
*'(x'', +(y, +(+(y''''0, +(y'''''', z'''''')), z'''))) -> *'(x'', +(+(y''''0, +(y'''''', z'''''')), z'''))
*'(x'', +(y, +(+(y'''''', +(+(y'''''''', z''''''''), z'''''')), z'''))) -> *'(x'', +(+(y'''''', +(+(y'''''''', z''''''''), z'''''')), z'''))
*'(x'', +(y, +(+(y''''0, z''''0), +(y''0'', +(y'''''', z''''''))))) -> *'(x'', +(+(y''''0, z''''0), +(y''0'', +(y'''''', z''''''))))
*'(x'', +(y, +(+(y''''0, z''''0), +(y'''''', +(+(y'''''''', z''''''''), z''''''))))) -> *'(x'', +(+(y''''0, z''''0), +(y'''''', +(+(y'''''''', z''''''''), z''''''))))
*'(x'', +(y, +(+(y''''', z''''0), +(+(+(y'''''''', z''''''''), z''0''''), z'''''')))) -> *'(x'', +(+(y''''', z''''0), +(+(+(y'''''''', z''''''''), z''0''''), z'''''')))
*'(x'', +(y, +(+(y''''', z''''0), +(+(y''0'''', +(y'''''''', z'''''''')), z'''''')))) -> *'(x'', +(+(y''''', z''''0), +(+(y''0'''', +(y'''''''', z'''''''')), z'''''')))
*'(x'', +(y, +(+(y''''', z''''0), +(+(y''''''', +(+(y'''''''''', z''''''''''), z'''''''')), z'''''')))) -> *'(x'', +(+(y''''', z''''0), +(+(y''''''', +(+(y'''''''''', z''''''''''), z'''''''')), z'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
*'(x'', +(y, +(+(y''''', z''''0), +(+(y''''''', +(+(y'''''''''', z''''''''''), z'''''''')), z'''''')))) -> *'(x'', +(+(y''''', z''''0), +(+(y''''''', +(+(y'''''''''', z''''''''''), z'''''''')), z'''''')))
*'(x'', +(y, +(+(y''''', z''''0), +(+(y''0'''', +(y'''''''', z'''''''')), z'''''')))) -> *'(x'', +(+(y''''', z''''0), +(+(y''0'''', +(y'''''''', z'''''''')), z'''''')))
*'(x'', +(y, +(+(y''''', z''''0), +(+(+(y'''''''', z''''''''), z''0''''), z'''''')))) -> *'(x'', +(+(y''''', z''''0), +(+(+(y'''''''', z''''''''), z''0''''), z'''''')))
*'(x'', +(y, +(+(y''''0, z''''0), +(y'''''', +(+(y'''''''', z''''''''), z''''''))))) -> *'(x'', +(+(y''''0, z''''0), +(y'''''', +(+(y'''''''', z''''''''), z''''''))))
*'(x'', +(y, +(+(y''''0, z''''0), +(y''0'', +(y'''''', z''''''))))) -> *'(x'', +(+(y''''0, z''''0), +(y''0'', +(y'''''', z''''''))))
*'(x'', +(y, +(+(y'''''', +(+(y'''''''', z''''''''), z'''''')), z'''))) -> *'(x'', +(+(y'''''', +(+(y'''''''', z''''''''), z'''''')), z'''))
*'(x'', +(y, +(+(y''''0, +(y'''''', z'''''')), z'''))) -> *'(x'', +(+(y''''0, +(y'''''', z'''''')), z'''))
*'(x'', +(y, +(+(+(y'''''', z''''''), z''''0), z'''))) -> *'(x'', +(+(+(y'''''', z''''''), z''''0), z'''))
*'(x''', +(y, +(+(y''''0, z''''0), +(+(y'''''', z''''''), z'''0)))) -> *'(x''', +(+(y''''0, z''''0), +(+(y'''''', z''''''), z'''0)))
*'(x''', +(y, +(+(y''0'', +(y'''''', z'''''')), z'''))) -> *'(x''', +(+(y''0'', +(y'''''', z'''''')), z'''))
*'(x''', +(y, +(+(+(y'''''', z''''''), z''0''), z'''))) -> *'(x''', +(+(+(y'''''', z''''''), z''0''), z'''))
*'(x'''', +(y, +(y''', +(+(y'''''', z''''''), z'''')))) -> *'(x'''', +(y''', +(+(y'''''', z''''''), z'''')))
*'(x'''', +(y, +(y''0, +(y'''', z'''')))) -> *'(x'''', +(y''0, +(y'''', z'''')))
*'(x'''', +(+(y''', +(+(y'''''', z''''''), z'''')), z)) -> *'(x'''', +(y''', +(+(y'''''', z''''''), z'''')))
*'(x'''', +(+(y''0, +(y'''', z'''')), z)) -> *'(x'''', +(y''0, +(y'''', z'''')))
*'(x'''', +(+(+(y'''', z''''), z''0), z)) -> *'(x'''', +(+(y'''', z''''), z''0))
*'(x''', +(y, +(+(y''''', +(+(y'''''''', z''''''''), z'''''')), z'''))) -> *'(x''', +(+(y''''', +(+(y'''''''', z''''''''), z'''''')), z'''))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
*'(x'', +(y, +(+(y''''', z''''0), +(+(y''''''', +(+(y'''''''''', z''''''''''), z'''''''')), z'''''')))) -> *'(x'', +(+(y''''', z''''0), +(+(y''''''', +(+(y'''''''''', z''''''''''), z'''''''')), z'''''')))
*'(x'', +(y, +(+(y''''', z''''0), +(+(y''0'''', +(y'''''''', z'''''''')), z'''''')))) -> *'(x'', +(+(y''''', z''''0), +(+(y''0'''', +(y'''''''', z'''''''')), z'''''')))
*'(x'', +(y, +(+(y''''', z''''0), +(+(+(y'''''''', z''''''''), z''0''''), z'''''')))) -> *'(x'', +(+(y''''', z''''0), +(+(+(y'''''''', z''''''''), z''0''''), z'''''')))
*'(x'', +(y, +(+(y''''0, z''''0), +(y'''''', +(+(y'''''''', z''''''''), z''''''))))) -> *'(x'', +(+(y''''0, z''''0), +(y'''''', +(+(y'''''''', z''''''''), z''''''))))
*'(x'', +(y, +(+(y''''0, z''''0), +(y''0'', +(y'''''', z''''''))))) -> *'(x'', +(+(y''''0, z''''0), +(y''0'', +(y'''''', z''''''))))
*'(x'', +(y, +(+(y'''''', +(+(y'''''''', z''''''''), z'''''')), z'''))) -> *'(x'', +(+(y'''''', +(+(y'''''''', z''''''''), z'''''')), z'''))
*'(x'', +(y, +(+(y''''0, +(y'''''', z'''''')), z'''))) -> *'(x'', +(+(y''''0, +(y'''''', z'''''')), z'''))
*'(x'', +(y, +(+(+(y'''''', z''''''), z''''0), z'''))) -> *'(x'', +(+(+(y'''''', z''''''), z''''0), z'''))
*'(x''', +(y, +(+(y''''0, z''''0), +(+(y'''''', z''''''), z'''0)))) -> *'(x''', +(+(y''''0, z''''0), +(+(y'''''', z''''''), z'''0)))
*'(x''', +(y, +(+(y''0'', +(y'''''', z'''''')), z'''))) -> *'(x''', +(+(y''0'', +(y'''''', z'''''')), z'''))
*'(x''', +(y, +(+(+(y'''''', z''''''), z''0''), z'''))) -> *'(x''', +(+(+(y'''''', z''''''), z''0''), z'''))
*'(x'''', +(y, +(y''', +(+(y'''''', z''''''), z'''')))) -> *'(x'''', +(y''', +(+(y'''''', z''''''), z'''')))
*'(x'''', +(y, +(y''0, +(y'''', z'''')))) -> *'(x'''', +(y''0, +(y'''', z'''')))
*'(x'''', +(+(y''', +(+(y'''''', z''''''), z'''')), z)) -> *'(x'''', +(y''', +(+(y'''''', z''''''), z'''')))
*'(x'''', +(+(y''0, +(y'''', z'''')), z)) -> *'(x'''', +(y''0, +(y'''', z'''')))
*'(x'''', +(+(+(y'''', z''''), z''0), z)) -> *'(x'''', +(+(y'''', z''''), z''0))
*'(x''', +(y, +(+(y''''', +(+(y'''''''', z''''''''), z'''''')), z'''))) -> *'(x''', +(+(y''''', +(+(y'''''''', z''''''''), z'''''')), z'''))
POL(*'(x1, x2)) = 1 + x1 + x2 POL(+(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost