Term Rewriting System R:
[x, y, z]
.(1, x) -> x
.(x, 1) -> x
.(i(x), x) -> 1
.(x, i(x)) -> 1
.(i(y), .(y, z)) -> z
.(y, .(i(y), z)) -> z
.(.(x, y), z) -> .(x, .(y, z))
i(1) -> 1
i(i(x)) -> x
i(.(x, y)) -> .(i(y), i(x))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

.'(.(x, y), z) -> .'(x, .(y, z))
.'(.(x, y), z) -> .'(y, z)
I(.(x, y)) -> .'(i(y), i(x))
I(.(x, y)) -> I(y)
I(.(x, y)) -> I(x)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
Remaining


Dependency Pair:

.'(.(x, y), z) -> .'(y, z)


Rules:


.(1, x) -> x
.(x, 1) -> x
.(i(x), x) -> 1
.(x, i(x)) -> 1
.(i(y), .(y, z)) -> z
.(y, .(i(y), z)) -> z
.(.(x, y), z) -> .(x, .(y, z))
i(1) -> 1
i(i(x)) -> x
i(.(x, y)) -> .(i(y), i(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

.'(.(x, y), z) -> .'(y, z)
one new Dependency Pair is created:

.'(.(x, .(x'', y'')), z'') -> .'(.(x'', y''), z'')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:00 minutes