R
↳Dependency Pair Analysis
NOT(or(x, y)) -> AND(not(x), not(y))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(y)
AND(x, or(y, z)) -> AND(x, y)
AND(x, or(y, z)) -> AND(x, z)
AND(or(y, z), x) -> AND(x, y)
AND(or(y, z), x) -> AND(x, z)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
AND(or(y, z), x) -> AND(x, z)
AND(or(y, z), x) -> AND(x, y)
AND(x, or(y, z)) -> AND(x, z)
AND(x, or(y, z)) -> AND(x, y)
not(not(x)) -> x
not(or(x, y)) -> and(not(x), not(y))
not(and(x, y)) -> or(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(or(y, z), x) -> or(and(x, y), and(x, z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
AND(or(y, z), x) -> AND(x, z)
AND(or(y, z), x) -> AND(x, y)
AND(x, or(y, z)) -> AND(x, z)
AND(x, or(y, z)) -> AND(x, y)
none
innermost
|
|
|
|
trivial
or(x1, x2) -> or(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
not(not(x)) -> x
not(or(x, y)) -> and(not(x), not(y))
not(and(x, y)) -> or(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(or(y, z), x) -> or(and(x, y), and(x, z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 5
↳Size-Change Principle
→DP Problem 3
↳UsableRules
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
none
innermost
|
|
trivial
or(x1, x2) -> or(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)
not(not(x)) -> x
not(or(x, y)) -> and(not(x), not(y))
not(and(x, y)) -> or(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(or(y, z), x) -> or(and(x, y), and(x, z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 6
↳Size-Change Principle
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)
none
innermost
|
|
trivial
and(x1, x2) -> and(x1, x2)