Term Rewriting System R:
[x, y]
D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))
D(minus(x)) -> minus(D(x))
D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2)))
D(ln(x)) -> div(D(x), x)
D(pow(x, y)) -> +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y)))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

D'(+(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(-(x, y)) -> D'(y)
D'(minus(x)) -> D'(x)
D'(div(x, y)) -> D'(x)
D'(div(x, y)) -> D'(y)
D'(ln(x)) -> D'(x)
D'(pow(x, y)) -> D'(x)
D'(pow(x, y)) -> D'(y)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`

Dependency Pairs:

D'(pow(x, y)) -> D'(y)
D'(pow(x, y)) -> D'(x)
D'(ln(x)) -> D'(x)
D'(div(x, y)) -> D'(y)
D'(div(x, y)) -> D'(x)
D'(minus(x)) -> D'(x)
D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(+(x, y)) -> D'(x)

Rules:

D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))
D(minus(x)) -> minus(D(x))
D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2)))
D(ln(x)) -> div(D(x), x)
D(pow(x, y)) -> +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y)))

Strategy:

innermost

The following dependency pairs can be strictly oriented:

D'(pow(x, y)) -> D'(y)
D'(pow(x, y)) -> D'(x)
D'(ln(x)) -> D'(x)
D'(div(x, y)) -> D'(y)
D'(div(x, y)) -> D'(x)
D'(minus(x)) -> D'(x)
D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(+(x, y)) -> D'(x)

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
D'(x1) -> D'(x1)
+(x1, x2) -> +(x1, x2)
pow(x1, x2) -> pow(x1, x2)
div(x1, x2) -> div(x1, x2)
*(x1, x2) -> *(x1, x2)
ln(x1) -> ln(x1)
-(x1, x2) -> -(x1, x2)
minus(x1) -> minus(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 2`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))
D(minus(x)) -> minus(D(x))
D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2)))
D(ln(x)) -> div(D(x), x)
D(pow(x, y)) -> +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y)))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes