Term Rewriting System R:
[x, y]
D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

D'(+(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(-(x, y)) -> D'(y)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)


Dependency Pairs:

D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(+(x, y)) -> D'(x)


Rules:


D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))


Strategy:

innermost




As we are in the innermost case, we can delete all 5 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
Size-Change Principle


Dependency Pairs:

D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(+(x, y)) -> D'(x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. D'(-(x, y)) -> D'(y)
  2. D'(-(x, y)) -> D'(x)
  3. D'(*(x, y)) -> D'(y)
  4. D'(*(x, y)) -> D'(x)
  5. D'(+(x, y)) -> D'(y)
  6. D'(+(x, y)) -> D'(x)
and get the following Size-Change Graph(s):
{1, 2, 3, 4, 5, 6} , {1, 2, 3, 4, 5, 6}
1>1

which lead(s) to this/these maximal multigraph(s):
{1, 2, 3, 4, 5, 6} , {1, 2, 3, 4, 5, 6}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
*(x1, x2) -> *(x1, x2)
-(x1, x2) -> -(x1, x2)
+(x1, x2) -> +(x1, x2)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes