Term Rewriting System R:
[x, y]
D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
D'(+(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(-(x, y)) -> D'(y)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
Dependency Pairs:
D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(+(x, y)) -> D'(x)
Rules:
D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))
Strategy:
innermost
As we are in the innermost case, we can delete all 5 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Size-Change Principle
Dependency Pairs:
D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(+(x, y)) -> D'(x)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- D'(-(x, y)) -> D'(y)
- D'(-(x, y)) -> D'(x)
- D'(*(x, y)) -> D'(y)
- D'(*(x, y)) -> D'(x)
- D'(+(x, y)) -> D'(y)
- D'(+(x, y)) -> D'(x)
and get the following Size-Change Graph(s): {1, 2, 3, 4, 5, 6} | , | {1, 2, 3, 4, 5, 6} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {1, 2, 3, 4, 5, 6} | , | {1, 2, 3, 4, 5, 6} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
*(x1, x2) -> *(x1, x2)
-(x1, x2) -> -(x1, x2)
+(x1, x2) -> +(x1, x2)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes