R
↳Dependency Pair Analysis
W(r(x)) -> W(x)
B(r(x)) -> B(x)
B(w(x)) -> W(b(x))
B(w(x)) -> B(x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
W(r(x)) -> W(x)
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
one new Dependency Pair is created:
W(r(x)) -> W(x)
W(r(r(x''))) -> W(r(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
W(r(r(x''))) -> W(r(x''))
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
one new Dependency Pair is created:
W(r(r(x''))) -> W(r(x''))
W(r(r(r(x'''')))) -> W(r(r(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
W(r(r(r(x'''')))) -> W(r(r(x'''')))
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
W(r(r(r(x'''')))) -> W(r(r(x'''')))
POL(W(x1)) = 1 + x1 POL(r(x1)) = 1 + x1
W(x1) -> W(x1)
r(x1) -> r(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
B(r(x)) -> B(x)
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
one new Dependency Pair is created:
B(r(x)) -> B(x)
B(r(r(x''))) -> B(r(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
B(r(r(x''))) -> B(r(x''))
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
one new Dependency Pair is created:
B(r(r(x''))) -> B(r(x''))
B(r(r(r(x'''')))) -> B(r(r(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 3
↳FwdInst
B(r(r(r(x'''')))) -> B(r(r(x'''')))
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
B(r(r(r(x'''')))) -> B(r(r(x'''')))
POL(B(x1)) = 1 + x1 POL(r(x1)) = 1 + x1
B(x1) -> B(x1)
r(x1) -> r(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳FwdInst
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
B(w(x)) -> B(x)
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
one new Dependency Pair is created:
B(w(x)) -> B(x)
B(w(w(x''))) -> B(w(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳Forward Instantiation Transformation
B(w(w(x''))) -> B(w(x''))
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
one new Dependency Pair is created:
B(w(w(x''))) -> B(w(x''))
B(w(w(w(x'''')))) -> B(w(w(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 11
↳Argument Filtering and Ordering
B(w(w(w(x'''')))) -> B(w(w(x'''')))
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
B(w(w(w(x'''')))) -> B(w(w(x'''')))
w(r(x)) -> r(w(x))
POL(B(x1)) = 1 + x1 POL(w(x1)) = 1 + x1 POL(r(x1)) = x1
B(x1) -> B(x1)
w(x1) -> w(x1)
r(x1) -> r(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost