R
↳Dependency Pair Analysis
W(r(x)) -> W(x)
B(r(x)) -> B(x)
B(w(x)) -> W(b(x))
B(w(x)) -> B(x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
W(r(x)) -> W(x)
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
W(r(x)) -> W(x)
POL(W(x1)) = x1 POL(r(x1)) = 1 + x1
W(x1) -> W(x1)
r(x1) -> r(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
B(r(x)) -> B(x)
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
B(r(x)) -> B(x)
POL(B(x1)) = x1 POL(r(x1)) = 1 + x1
B(x1) -> B(x1)
r(x1) -> r(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳AFS
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
B(w(x)) -> B(x)
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost
B(w(x)) -> B(x)
POL(B(x1)) = x1 POL(w(x1)) = 1 + x1
B(x1) -> B(x1)
w(x1) -> w(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 6
↳Dependency Graph
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
innermost