Term Rewriting System R:
[x]
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
W(r(x)) -> W(x)
B(r(x)) -> B(x)
B(w(x)) -> W(b(x))
B(w(x)) -> B(x)
Furthermore, R contains three SCCs.
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
Dependency Pair:
W(r(x)) -> W(x)
Rules:
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
Strategy:
innermost
The following dependency pair can be strictly oriented:
W(r(x)) -> W(x)
There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
POL(W(x1)) | = x1 |
POL(r(x1)) | = 1 + x1 |
resulting in one new DP problem.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
Dependency Pair:
Rules:
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
Dependency Pair:
B(r(x)) -> B(x)
Rules:
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
Strategy:
innermost
The following dependency pair can be strictly oriented:
B(r(x)) -> B(x)
There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
POL(B(x1)) | = x1 |
POL(r(x1)) | = 1 + x1 |
resulting in one new DP problem.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Polo
Dependency Pair:
Rules:
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
Dependency Pair:
B(w(x)) -> B(x)
Rules:
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
Strategy:
innermost
The following dependency pair can be strictly oriented:
B(w(x)) -> B(x)
There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
POL(B(x1)) | = x1 |
POL(w(x1)) | = 1 + x1 |
resulting in one new DP problem.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Dependency Graph
Dependency Pair:
Rules:
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes