R
↳Dependency Pair Analysis
+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), j(y)) -> +'(x, y)
+'(j(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(+(x, y), j(#))
+'(j(x), j(y)) -> +'(x, y)
+'(1(x), j(y)) -> 0'(+(x, y))
+'(1(x), j(y)) -> +'(x, y)
+'(j(x), 1(y)) -> 0'(+(x, y))
+'(j(x), 1(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
OPP(0(x)) -> 0'(opp(x))
OPP(0(x)) -> OPP(x)
OPP(1(x)) -> OPP(x)
OPP(j(x)) -> OPP(x)
-'(x, y) -> +'(x, opp(y))
-'(x, y) -> OPP(y)
*'(0(x), y) -> 0'(*(x, y))
*'(0(x), y) -> *'(x, y)
*'(1(x), y) -> +'(0(*(x, y)), y)
*'(1(x), y) -> 0'(*(x, y))
*'(1(x), y) -> *'(x, y)
*'(j(x), y) -> -'(0(*(x, y)), y)
*'(j(x), y) -> 0'(*(x, y))
*'(j(x), y) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(*(x, y), z) -> *'(y, z)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(j(x), 1(y)) -> +'(x, y)
+'(1(x), j(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(+(x, y), j(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(j(x), 0(y)) -> +'(x, y)
+'(0(x), j(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳Modular Removal of Rules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(j(x), 1(y)) -> +'(x, y)
+'(1(x), j(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(+(x, y), j(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(j(x), 0(y)) -> +'(x, y)
+'(0(x), j(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), j(y)) -> 0(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(x, #) -> x
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(0(x), 0(y)) -> 0(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
0(#) -> #
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), j(y)) -> 0(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(x, #) -> x
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(0(x), 0(y)) -> 0(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
POL(#) = 0 POL(0(x1)) = x1 POL(1(x1)) = 1 + x1 POL(j(x1)) = 1 + x1 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = 1 + x1 + x2
+'(j(x), 1(y)) -> +'(x, y)
+'(1(x), j(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(+(x, y), j(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(j(x), 0(y)) -> +'(x, y)
+'(0(x), j(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳MRR
...
→DP Problem 5
↳Modular Removal of Rules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(0(x), 1(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(x, #) -> x
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(0(x), 0(y)) -> 0(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
+(x, #) -> x
0(#) -> #
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(0(x), 0(y)) -> 0(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(0(x), 1(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(#, x) -> x
+(1(x), 0(y)) -> 1(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
POL(#) = 0 POL(0(x1)) = 1 + x1 POL(1(x1)) = x1 POL(j(x1)) = x1 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = 1 + x1 + x2
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(0(x), 0(y)) -> 0(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳MRR
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+(x, #) -> x
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳MRR
...
→DP Problem 7
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
+'(+(x, y), z) -> +'(y, z)
+(x, #) -> x
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳MRR
...
→DP Problem 8
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
+'(+(x, y), z) -> +'(y, z)
none
innermost
|
|
trivial
+(x1, x2) -> +(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
OPP(j(x)) -> OPP(x)
OPP(1(x)) -> OPP(x)
OPP(0(x)) -> OPP(x)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 9
↳Size-Change Principle
→DP Problem 3
↳UsableRules
OPP(j(x)) -> OPP(x)
OPP(1(x)) -> OPP(x)
OPP(0(x)) -> OPP(x)
none
innermost
|
|
trivial
0(x1) -> 0(x1)
1(x1) -> 1(x1)
j(x1) -> j(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
*'(*(x, y), z) -> *'(y, z)
*'(j(x), y) -> *'(x, y)
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 10
↳Size-Change Principle
*'(*(x, y), z) -> *'(y, z)
*'(j(x), y) -> *'(x, y)
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
none
innermost
|
|
trivial
0(x1) -> 0(x1)
1(x1) -> 1(x1)
*(x1, x2) -> *(x1, x2)
j(x1) -> j(x1)