R
↳Dependency Pair Analysis
APPEND(l12, l21) -> MATCH0(l12, l21, l12)
MATCH0(l12, l21, Cons(x, l)) -> APPEND(l, l21)
PART(a4, l3) -> MATCH1(a4, l3, l3)
MATCH1(a4, l3, Cons(x, l')) -> MATCH2(x, l', a4, l3, part(a4, l'))
MATCH1(a4, l3, Cons(x, l')) -> PART(a4, l')
MATCH2(x, l', a4, l3, Pair(l1, l2)) -> MATCH3(l1, l2, x, l', a4, l3, test(a4, x))
MATCH2(x, l', a4, l3, Pair(l1, l2)) -> TEST(a4, x)
QUICK(l5) -> MATCH4(l5, l5)
MATCH4(l5, Cons(a, l')) -> MATCH5(a, l', l5, part(a, l'))
MATCH4(l5, Cons(a, l')) -> PART(a, l')
MATCH5(a, l', l5, Pair(l1, l2)) -> APPEND(quick(l1), Cons(a, quick(l2)))
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
MATCH0(l12, l21, Cons(x, l)) -> APPEND(l, l21)
APPEND(l12, l21) -> MATCH0(l12, l21, l12)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH0(l12, l21, Cons(x, l)) -> APPEND(l, l21)
MATCH0(Cons(x', l'), l21'', Cons(x', l')) -> APPEND(l', l21'')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
MATCH0(Cons(x', l'), l21'', Cons(x', l')) -> APPEND(l', l21'')
APPEND(l12, l21) -> MATCH0(l12, l21, l12)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
APPEND(l12, l21) -> MATCH0(l12, l21, l12)
APPEND(Cons(x'''', l''''), l21') -> MATCH0(Cons(x'''', l''''), l21', Cons(x'''', l''''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
APPEND(Cons(x'''', l''''), l21') -> MATCH0(Cons(x'''', l''''), l21', Cons(x'''', l''''))
MATCH0(Cons(x', l'), l21'', Cons(x', l')) -> APPEND(l', l21'')
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH0(Cons(x', l'), l21'', Cons(x', l')) -> APPEND(l', l21'')
MATCH0(Cons(x', Cons(x'''''', l'''''')), l21'''', Cons(x', Cons(x'''''', l''''''))) -> APPEND(Cons(x'''''', l''''''), l21'''')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
MATCH0(Cons(x', Cons(x'''''', l'''''')), l21'''', Cons(x', Cons(x'''''', l''''''))) -> APPEND(Cons(x'''''', l''''''), l21'''')
APPEND(Cons(x'''', l''''), l21') -> MATCH0(Cons(x'''', l''''), l21', Cons(x'''', l''''))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
APPEND(Cons(x'''', l''''), l21') -> MATCH0(Cons(x'''', l''''), l21', Cons(x'''', l''''))
APPEND(Cons(x''''', Cons(x''''''''', l''''''''')), l21'') -> MATCH0(Cons(x''''', Cons(x''''''''', l''''''''')), l21'', Cons(x''''', Cons(x''''''''', l''''''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 4
↳FwdInst
...
→DP Problem 7
↳Argument Filtering and Ordering
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
APPEND(Cons(x''''', Cons(x''''''''', l''''''''')), l21'') -> MATCH0(Cons(x''''', Cons(x''''''''', l''''''''')), l21'', Cons(x''''', Cons(x''''''''', l''''''''')))
MATCH0(Cons(x', Cons(x'''''', l'''''')), l21'''', Cons(x', Cons(x'''''', l''''''))) -> APPEND(Cons(x'''''', l''''''), l21'''')
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
MATCH0(Cons(x', Cons(x'''''', l'''''')), l21'''', Cons(x', Cons(x'''''', l''''''))) -> APPEND(Cons(x'''''', l''''''), l21'''')
MATCH0(x1, x2, x3) -> x1
Cons(x1, x2) -> Cons(x1, x2)
APPEND(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 4
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
APPEND(Cons(x''''', Cons(x''''''''', l''''''''')), l21'') -> MATCH0(Cons(x''''', Cons(x''''''''', l''''''''')), l21'', Cons(x''''', Cons(x''''''''', l''''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Instantiation Transformation
→DP Problem 3
↳Nar
MATCH1(a4, l3, Cons(x, l')) -> PART(a4, l')
PART(a4, l3) -> MATCH1(a4, l3, l3)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH1(a4, l3, Cons(x, l')) -> PART(a4, l')
MATCH1(a4'', Cons(x', l''), Cons(x', l'')) -> PART(a4'', l'')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
MATCH1(a4'', Cons(x', l''), Cons(x', l'')) -> PART(a4'', l'')
PART(a4, l3) -> MATCH1(a4, l3, l3)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
PART(a4, l3) -> MATCH1(a4, l3, l3)
PART(a4', Cons(x'''', l''''')) -> MATCH1(a4', Cons(x'''', l'''''), Cons(x'''', l'''''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 9
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
PART(a4', Cons(x'''', l''''')) -> MATCH1(a4', Cons(x'''', l'''''), Cons(x'''', l'''''))
MATCH1(a4'', Cons(x', l''), Cons(x', l'')) -> PART(a4'', l'')
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH1(a4'', Cons(x', l''), Cons(x', l'')) -> PART(a4'', l'')
MATCH1(a4'''', Cons(x', Cons(x'''''', l''''''')), Cons(x', Cons(x'''''', l'''''''))) -> PART(a4'''', Cons(x'''''', l'''''''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 9
↳FwdInst
...
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
MATCH1(a4'''', Cons(x', Cons(x'''''', l''''''')), Cons(x', Cons(x'''''', l'''''''))) -> PART(a4'''', Cons(x'''''', l'''''''))
PART(a4', Cons(x'''', l''''')) -> MATCH1(a4', Cons(x'''', l'''''), Cons(x'''', l'''''))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
PART(a4', Cons(x'''', l''''')) -> MATCH1(a4', Cons(x'''', l'''''), Cons(x'''', l'''''))
PART(a4'', Cons(x''''', Cons(x''''''''', l''''''''''))) -> MATCH1(a4'', Cons(x''''', Cons(x''''''''', l'''''''''')), Cons(x''''', Cons(x''''''''', l'''''''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 9
↳FwdInst
...
→DP Problem 12
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
PART(a4'', Cons(x''''', Cons(x''''''''', l''''''''''))) -> MATCH1(a4'', Cons(x''''', Cons(x''''''''', l'''''''''')), Cons(x''''', Cons(x''''''''', l'''''''''')))
MATCH1(a4'''', Cons(x', Cons(x'''''', l''''''')), Cons(x', Cons(x'''''', l'''''''))) -> PART(a4'''', Cons(x'''''', l'''''''))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
MATCH1(a4'''', Cons(x', Cons(x'''''', l''''''')), Cons(x', Cons(x'''''', l'''''''))) -> PART(a4'''', Cons(x'''''', l'''''''))
MATCH1(x1, x2, x3) -> x2
Cons(x1, x2) -> Cons(x1, x2)
PART(x1, x2) -> x2
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 9
↳FwdInst
...
→DP Problem 13
↳Dependency Graph
→DP Problem 3
↳Nar
PART(a4'', Cons(x''''', Cons(x''''''''', l''''''''''))) -> MATCH1(a4'', Cons(x''''', Cons(x''''''''', l'''''''''')), Cons(x''''', Cons(x''''''''', l'''''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Narrowing Transformation
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
MATCH4(l5, Cons(a, l')) -> MATCH5(a, l', l5, part(a, l'))
QUICK(l5) -> MATCH4(l5, l5)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH4(l5, Cons(a, l')) -> MATCH5(a, l', l5, part(a, l'))
MATCH4(l5, Cons(a', l'')) -> MATCH5(a', l'', l5, match1(a', l'', l''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Narrowing Transformation
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
MATCH4(l5, Cons(a', l'')) -> MATCH5(a', l'', l5, match1(a', l'', l''))
QUICK(l5) -> MATCH4(l5, l5)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH4(l5, Cons(a', l'')) -> MATCH5(a', l'', l5, match1(a', l'', l''))
MATCH4(l5, Cons(a'', Nil)) -> MATCH5(a'', Nil, l5, Pair(Nil, Nil))
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 15
↳Instantiation Transformation
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
MATCH4(l5, Cons(a'', Nil)) -> MATCH5(a'', Nil, l5, Pair(Nil, Nil))
QUICK(l5) -> MATCH4(l5, l5)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
MATCH5(a', Nil, l5'', Pair(Nil, Nil)) -> QUICK(Nil)
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l1')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 16
↳Instantiation Transformation
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l1')
MATCH5(a', Nil, l5'', Pair(Nil, Nil)) -> QUICK(Nil)
MATCH4(l5, Cons(a'', Nil)) -> MATCH5(a'', Nil, l5, Pair(Nil, Nil))
QUICK(l5) -> MATCH4(l5, l5)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
MATCH5(a', Nil, l5'', Pair(Nil, Nil)) -> QUICK(Nil)
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l2')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 17
↳Forward Instantiation Transformation
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l2')
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
MATCH5(a', Nil, l5'', Pair(Nil, Nil)) -> QUICK(Nil)
MATCH5(a', Nil, l5'', Pair(Nil, Nil)) -> QUICK(Nil)
MATCH4(l5, Cons(a'', Nil)) -> MATCH5(a'', Nil, l5, Pair(Nil, Nil))
QUICK(l5) -> MATCH4(l5, l5)
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l1')
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
QUICK(l5) -> MATCH4(l5, l5)
QUICK(Cons(a'''', Nil)) -> MATCH4(Cons(a'''', Nil), Cons(a'''', Nil))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 18
↳Forward Instantiation Transformation
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l1')
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l2')
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l1')
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 19
↳Forward Instantiation Transformation
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l2')
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l2')
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', Cons(a'''''', Cons(x''''', l''''''')))) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 20
↳Narrowing Transformation
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', Cons(a'''''', Cons(x''''', l''''''')))) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
MATCH4(l5, Cons(a''', Cons(x', l''''))) -> MATCH5(a''', Cons(x', l''''), l5, match2(x', l'''', a''', Cons(x', l''''), match1(a''', l'''', l'''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 21
↳Narrowing Transformation
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
MATCH4(l5, Cons(a''', Cons(x', l''''))) -> MATCH5(a''', Cons(x', l''''), l5, match2(x', l'''', a''', Cons(x', l''''), match1(a''', l'''', l'''')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', Cons(a'''''', Cons(x''''', l''''''')))) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH4(l5, Cons(a''', Cons(x', l''''))) -> MATCH5(a''', Cons(x', l''''), l5, match2(x', l'''', a''', Cons(x', l''''), match1(a''', l'''', l'''')))
MATCH4(l5, Cons(a'''', Cons(x', Nil))) -> MATCH5(a'''', Cons(x', Nil), l5, match2(x', Nil, a'''', Cons(x', Nil), Pair(Nil, Nil)))
MATCH4(l5, Cons(a'''', Cons(x', Cons(x'', l'')))) -> MATCH5(a'''', Cons(x', Cons(x'', l'')), l5, match2(x', Cons(x'', l''), a'''', Cons(x', Cons(x'', l'')), match2(x'', l'', a'''', Cons(x'', l''), part(a'''', l''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 22
↳Narrowing Transformation
MATCH4(l5, Cons(a'''', Cons(x', Cons(x'', l'')))) -> MATCH5(a'''', Cons(x', Cons(x'', l'')), l5, match2(x', Cons(x'', l''), a'''', Cons(x', Cons(x'', l'')), match2(x'', l'', a'''', Cons(x'', l''), part(a'''', l''))))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', Cons(a'''''', Cons(x''''', l''''''')))) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
MATCH4(l5, Cons(a'''', Cons(x', Nil))) -> MATCH5(a'''', Cons(x', Nil), l5, match2(x', Nil, a'''', Cons(x', Nil), Pair(Nil, Nil)))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH4(l5, Cons(a'''', Cons(x', Nil))) -> MATCH5(a'''', Cons(x', Nil), l5, match2(x', Nil, a'''', Cons(x', Nil), Pair(Nil, Nil)))
MATCH4(l5, Cons(a''''', Cons(x'', Nil))) -> MATCH5(a''''', Cons(x'', Nil), l5, match3(Nil, Nil, x'', Nil, a''''', Cons(x'', Nil), test(a''''', x'')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 23
↳Narrowing Transformation
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', Cons(a'''''', Cons(x''''', l''''''')))) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
MATCH4(l5, Cons(a''''', Cons(x'', Nil))) -> MATCH5(a''''', Cons(x'', Nil), l5, match3(Nil, Nil, x'', Nil, a''''', Cons(x'', Nil), test(a''''', x'')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
MATCH4(l5, Cons(a'''', Cons(x', Cons(x'', l'')))) -> MATCH5(a'''', Cons(x', Cons(x'', l'')), l5, match2(x', Cons(x'', l''), a'''', Cons(x', Cons(x'', l'')), match2(x'', l'', a'''', Cons(x'', l''), part(a'''', l''))))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH4(l5, Cons(a'''', Cons(x', Cons(x'', l'')))) -> MATCH5(a'''', Cons(x', Cons(x'', l'')), l5, match2(x', Cons(x'', l''), a'''', Cons(x', Cons(x'', l'')), match2(x'', l'', a'''', Cons(x'', l''), part(a'''', l''))))
MATCH4(l5, Cons(a''''', Cons(x', Cons(x'', l''')))) -> MATCH5(a''''', Cons(x', Cons(x'', l''')), l5, match2(x', Cons(x'', l'''), a''''', Cons(x', Cons(x'', l''')), match2(x'', l''', a''''', Cons(x'', l'''), match1(a''''', l''', l'''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 24
↳Instantiation Transformation
MATCH4(l5, Cons(a''''', Cons(x', Cons(x'', l''')))) -> MATCH5(a''''', Cons(x', Cons(x'', l''')), l5, match2(x', Cons(x'', l'''), a''''', Cons(x', Cons(x'', l''')), match2(x'', l''', a''''', Cons(x'', l'''), match1(a''''', l''', l'''))))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
MATCH4(l5, Cons(a''''', Cons(x'', Nil))) -> MATCH5(a''''', Cons(x'', Nil), l5, match3(Nil, Nil, x'', Nil, a''''', Cons(x'', Nil), test(a''''', x'')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', Cons(a'''''', Cons(x''''', l''''''')))) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a'''''''', Cons(x'''''', l'''''''')), l2'')) -> QUICK(Cons(a'''''''', Cons(x'''''', l'''''''')))
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(Cons(a'''''''', Cons(x''''''', l'''''''')), l2'')) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 25
↳Instantiation Transformation
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(Cons(a'''''''', Cons(x''''''', l'''''''')), l2'')) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a'''''''', Cons(x'''''', l'''''''')), l2'')) -> QUICK(Cons(a'''''''', Cons(x'''''', l'''''''')))
MATCH4(l5, Cons(a''''', Cons(x'', Nil))) -> MATCH5(a''''', Cons(x'', Nil), l5, match3(Nil, Nil, x'', Nil, a''''', Cons(x'', Nil), test(a''''', x'')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', Cons(a'''''', Cons(x''''', l''''''')))) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
MATCH4(l5, Cons(a''''', Cons(x', Cons(x'', l''')))) -> MATCH5(a''''', Cons(x', Cons(x'', l''')), l5, match2(x', Cons(x'', l'''), a''''', Cons(x', Cons(x'', l''')), match2(x'', l''', a''''', Cons(x'', l'''), match1(a''''', l''', l'''))))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', Cons(a'''''', Cons(x''''', l''''''')))) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a'''''''', Cons(x'''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x'''''', l'''''''')))
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(l1'', Cons(a'''''''', Cons(x''''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 26
↳Forward Instantiation Transformation
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(l1'', Cons(a'''''''', Cons(x''''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
MATCH4(l5, Cons(a''''', Cons(x', Cons(x'', l''')))) -> MATCH5(a''''', Cons(x', Cons(x'', l''')), l5, match2(x', Cons(x'', l'''), a''''', Cons(x', Cons(x'', l''')), match2(x'', l''', a''''', Cons(x'', l'''), match1(a''''', l''', l'''))))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a'''''''', Cons(x'''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x'''''', l'''''''')))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a'''''''', Cons(x'''''', l'''''''')), l2'')) -> QUICK(Cons(a'''''''', Cons(x'''''', l'''''''')))
MATCH4(l5, Cons(a''''', Cons(x'', Nil))) -> MATCH5(a''''', Cons(x'', Nil), l5, match3(Nil, Nil, x'', Nil, a''''', Cons(x'', Nil), test(a''''', x'')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(Cons(a'''''''', Cons(x''''''', l'''''''')), l2'')) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
QUICK(Cons(a''''', Cons(x''''', Nil))) -> MATCH4(Cons(a''''', Cons(x''''', Nil)), Cons(a''''', Cons(x''''', Nil)))
QUICK(Cons(a''''', Cons(x'''0, Cons(x''''', l'''''')))) -> MATCH4(Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))), Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 27
↳Forward Instantiation Transformation
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a'''''''', Cons(x'''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x'''''', l'''''''')))
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(Cons(a'''''''', Cons(x''''''', l'''''''')), l2'')) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
MATCH4(l5, Cons(a''''', Cons(x', Cons(x'', l''')))) -> MATCH5(a''''', Cons(x', Cons(x'', l''')), l5, match2(x', Cons(x'', l'''), a''''', Cons(x', Cons(x'', l''')), match2(x'', l''', a''''', Cons(x'', l'''), match1(a''''', l''', l'''))))
QUICK(Cons(a''''', Cons(x'''0, Cons(x''''', l'''''')))) -> MATCH4(Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))), Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a'''''''', Cons(x'''''', l'''''''')), l2'')) -> QUICK(Cons(a'''''''', Cons(x'''''', l'''''''')))
MATCH4(l5, Cons(a''''', Cons(x'', Nil))) -> MATCH5(a''''', Cons(x'', Nil), l5, match3(Nil, Nil, x'', Nil, a''''', Cons(x'', Nil), test(a''''', x'')))
QUICK(Cons(a''''', Cons(x''''', Nil))) -> MATCH4(Cons(a''''', Cons(x''''', Nil)), Cons(a''''', Cons(x''''', Nil)))
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(l1'', Cons(a'''''''', Cons(x''''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a'''''''', Cons(x'''''', l'''''''')), l2'')) -> QUICK(Cons(a'''''''', Cons(x'''''', l'''''''')))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Nil)), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 28
↳Forward Instantiation Transformation
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(l1'', Cons(a'''''''', Cons(x''''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(Cons(a'''''''', Cons(x''''''', l'''''''')), l2'')) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
MATCH4(l5, Cons(a''''', Cons(x', Cons(x'', l''')))) -> MATCH5(a''''', Cons(x', Cons(x'', l''')), l5, match2(x', Cons(x'', l'''), a''''', Cons(x', Cons(x'', l''')), match2(x'', l''', a''''', Cons(x'', l'''), match1(a''''', l''', l'''))))
QUICK(Cons(a''''', Cons(x'''0, Cons(x''''', l'''''')))) -> MATCH4(Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))), Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Nil)), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH4(l5, Cons(a''''', Cons(x'', Nil))) -> MATCH5(a''''', Cons(x'', Nil), l5, match3(Nil, Nil, x'', Nil, a''''', Cons(x'', Nil), test(a''''', x'')))
QUICK(Cons(a''''', Cons(x''''', Nil))) -> MATCH4(Cons(a''''', Cons(x''''', Nil)), Cons(a''''', Cons(x''''', Nil)))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a'''''''', Cons(x'''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x'''''', l'''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(Cons(a'''''''', Cons(x''''''', l'''''''')), l2'')) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Nil)), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))), l2'')) -> QUICK(Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 29
↳Forward Instantiation Transformation
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Nil)), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))), l2'')) -> QUICK(Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))))
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Nil)), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH4(l5, Cons(a''''', Cons(x', Cons(x'', l''')))) -> MATCH5(a''''', Cons(x', Cons(x'', l''')), l5, match2(x', Cons(x'', l'''), a''''', Cons(x', Cons(x'', l''')), match2(x'', l''', a''''', Cons(x'', l'''), match1(a''''', l''', l'''))))
QUICK(Cons(a''''', Cons(x'''0, Cons(x''''', l'''''')))) -> MATCH4(Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))), Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a'''''''', Cons(x'''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x'''''', l'''''''')))
MATCH4(l5, Cons(a''''', Cons(x'', Nil))) -> MATCH5(a''''', Cons(x'', Nil), l5, match3(Nil, Nil, x'', Nil, a''''', Cons(x'', Nil), test(a''''', x'')))
QUICK(Cons(a''''', Cons(x''''', Nil))) -> MATCH4(Cons(a''''', Cons(x''''', Nil)), Cons(a''''', Cons(x''''', Nil)))
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(l1'', Cons(a'''''''', Cons(x''''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a'''''''', Cons(x'''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x'''''', l'''''''')))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a''''''''', Cons(x'''''''', Nil)))) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))))) -> QUICK(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 30
↳Forward Instantiation Transformation
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))), l2'')) -> QUICK(Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))))
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Nil)), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))))) -> QUICK(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a''''''''', Cons(x'''''''', Nil)))) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Nil)), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH4(l5, Cons(a''''', Cons(x'', Nil))) -> MATCH5(a''''', Cons(x'', Nil), l5, match3(Nil, Nil, x'', Nil, a''''', Cons(x'', Nil), test(a''''', x'')))
QUICK(Cons(a''''', Cons(x''''', Nil))) -> MATCH4(Cons(a''''', Cons(x''''', Nil)), Cons(a''''', Cons(x''''', Nil)))
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(l1'', Cons(a'''''''', Cons(x''''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
MATCH4(l5, Cons(a''''', Cons(x', Cons(x'', l''')))) -> MATCH5(a''''', Cons(x', Cons(x'', l''')), l5, match2(x', Cons(x'', l'''), a''''', Cons(x', Cons(x'', l''')), match2(x'', l''', a''''', Cons(x'', l'''), match1(a''''', l''', l'''))))
QUICK(Cons(a''''', Cons(x'''0, Cons(x''''', l'''''')))) -> MATCH4(Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))), Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH5(a'', Cons(x'''0, Cons(x'''''', l'''''')), l5''', Pair(l1'', Cons(a'''''''', Cons(x''''''', l'''''''')))) -> QUICK(Cons(a'''''''', Cons(x''''''', l'''''''')))
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(l1'', Cons(a''''''''', Cons(x'''''''', Nil)))) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(l1'', Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))))) -> QUICK(Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 31
↳Remaining Obligation(s)
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(l1'', Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))))) -> QUICK(Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))))
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(l1'', Cons(a''''''''', Cons(x'''''''', Nil)))) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))))) -> QUICK(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(l1'', Cons(a''''''''', Cons(x'''''''', Nil)))) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Cons(x''''''''', l'''''''''))))
MATCH5(a'', Cons(x'''0, Nil), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Nil)), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH4(l5, Cons(a''''', Cons(x'', Nil))) -> MATCH5(a''''', Cons(x'', Nil), l5, match3(Nil, Nil, x'', Nil, a''''', Cons(x'', Nil), test(a''''', x'')))
QUICK(Cons(a''''', Cons(x''''', Nil))) -> MATCH4(Cons(a''''', Cons(x''''', Nil)), Cons(a''''', Cons(x''''', Nil)))
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(Cons(a''''''''', Cons(x'''''''', Nil)), l2'')) -> QUICK(Cons(a''''''''', Cons(x'''''''', Nil)))
MATCH4(l5, Cons(a''''', Cons(x', Cons(x'', l''')))) -> MATCH5(a''''', Cons(x', Cons(x'', l''')), l5, match2(x', Cons(x'', l'''), a''''', Cons(x', Cons(x'', l''')), match2(x'', l''', a''''', Cons(x'', l'''), match1(a''''', l''', l'''))))
QUICK(Cons(a''''', Cons(x'''0, Cons(x''''', l'''''')))) -> MATCH4(Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))), Cons(a''''', Cons(x'''0, Cons(x''''', l''''''))))
MATCH5(a'', Cons(x'''0, Cons(x'''''''', l'''''')), l5''', Pair(Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))), l2'')) -> QUICK(Cons(a''''''''', Cons(x''''''''', Cons(x'''''''', l'''''''''))))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost