R
↳Dependency Pair Analysis
APPEND(l12, l21) -> MATCH0(l12, l21, l12)
MATCH0(l12, l21, Cons(x, l)) -> APPEND(l, l21)
PART(a4, l3) -> MATCH1(a4, l3, l3)
MATCH1(a4, l3, Cons(x, l')) -> MATCH2(x, l', a4, l3, part(a4, l'))
MATCH1(a4, l3, Cons(x, l')) -> PART(a4, l')
MATCH2(x, l', a4, l3, Pair(l1, l2)) -> MATCH3(l1, l2, x, l', a4, l3, test(a4, x))
MATCH2(x, l', a4, l3, Pair(l1, l2)) -> TEST(a4, x)
QUICK(l5) -> MATCH4(l5, l5)
MATCH4(l5, Cons(a, l')) -> MATCH5(a, l', l5, part(a, l'))
MATCH4(l5, Cons(a, l')) -> PART(a, l')
MATCH5(a, l', l5, Pair(l1, l2)) -> APPEND(quick(l1), Cons(a, quick(l2)))
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
MATCH0(l12, l21, Cons(x, l)) -> APPEND(l, l21)
APPEND(l12, l21) -> MATCH0(l12, l21, l12)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
MATCH0(l12, l21, Cons(x, l)) -> APPEND(l, l21)
POL(MATCH_0(x1, x2, x3)) = x3 POL(Cons(x1, x2)) = 1 + x2 POL(APPEND(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
APPEND(l12, l21) -> MATCH0(l12, l21, l12)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
MATCH1(a4, l3, Cons(x, l')) -> PART(a4, l')
PART(a4, l3) -> MATCH1(a4, l3, l3)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
MATCH1(a4, l3, Cons(x, l')) -> PART(a4, l')
POL(PART(x1, x2)) = x2 POL(Cons(x1, x2)) = 1 + x2 POL(MATCH_1(x1, x2, x3)) = x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Polo
PART(a4, l3) -> MATCH1(a4, l3, l3)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
MATCH4(l5, Cons(a, l')) -> MATCH5(a, l', l5, part(a, l'))
QUICK(l5) -> MATCH4(l5, l5)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
MATCH4(l5, Cons(a, l')) -> MATCH5(a, l', l5, part(a, l'))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
test(x0, y) -> True
test(x0, y) -> False
POL(Nil) = 0 POL(MATCH_5(x1, x2, x3, x4)) = x4 POL(match_2(x1, x2, x3, x4, x5)) = 1 + x5 POL(False) = 0 POL(MATCH_4(x1, x2)) = x2 POL(Cons(x1, x2)) = 1 + x2 POL(match_3(x1, x2, x3, x4, x5, x6, x7)) = 1 + x1 + x2 POL(QUICK(x1)) = x1 POL(test(x1, x2)) = 0 POL(Pair(x1, x2)) = x1 + x2 POL(True) = 0 POL(part(x1, x2)) = x2 POL(match_1(x1, x2, x3)) = x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Dependency Graph
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
QUICK(l5) -> MATCH4(l5, l5)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost