R
↳Dependency Pair Analysis
APPEND(l12, l21) -> MATCH0(l12, l21, l12)
MATCH0(l12, l21, Cons(x, l)) -> APPEND(l, l21)
PART(a4, l3) -> MATCH1(a4, l3, l3)
MATCH1(a4, l3, Cons(x, l')) -> MATCH2(x, l', a4, l3, part(a4, l'))
MATCH1(a4, l3, Cons(x, l')) -> PART(a4, l')
MATCH2(x, l', a4, l3, Pair(l1, l2)) -> MATCH3(l1, l2, x, l', a4, l3, test(a4, x))
MATCH2(x, l', a4, l3, Pair(l1, l2)) -> TEST(a4, x)
QUICK(l5) -> MATCH4(l5, l5)
MATCH4(l5, Cons(a, l')) -> MATCH5(a, l', l5, part(a, l'))
MATCH4(l5, Cons(a, l')) -> PART(a, l')
MATCH5(a, l', l5, Pair(l1, l2)) -> APPEND(quick(l1), Cons(a, quick(l2)))
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
MATCH0(l12, l21, Cons(x, l)) -> APPEND(l, l21)
APPEND(l12, l21) -> MATCH0(l12, l21, l12)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH0(l12, l21, Cons(x, l)) -> APPEND(l, l21)
MATCH0(Cons(x', l'), l21'', Cons(x', l')) -> APPEND(l', l21'')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
MATCH0(Cons(x', l'), l21'', Cons(x', l')) -> APPEND(l', l21'')
APPEND(l12, l21) -> MATCH0(l12, l21, l12)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
APPEND(l12, l21) -> MATCH0(l12, l21, l12)
APPEND(Cons(x'''', l''''), l21') -> MATCH0(Cons(x'''', l''''), l21', Cons(x'''', l''''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
APPEND(Cons(x'''', l''''), l21') -> MATCH0(Cons(x'''', l''''), l21', Cons(x'''', l''''))
MATCH0(Cons(x', l'), l21'', Cons(x', l')) -> APPEND(l', l21'')
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH0(Cons(x', l'), l21'', Cons(x', l')) -> APPEND(l', l21'')
MATCH0(Cons(x', Cons(x'''''', l'''''')), l21'''', Cons(x', Cons(x'''''', l''''''))) -> APPEND(Cons(x'''''', l''''''), l21'''')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
MATCH0(Cons(x', Cons(x'''''', l'''''')), l21'''', Cons(x', Cons(x'''''', l''''''))) -> APPEND(Cons(x'''''', l''''''), l21'''')
APPEND(Cons(x'''', l''''), l21') -> MATCH0(Cons(x'''', l''''), l21', Cons(x'''', l''''))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
APPEND(Cons(x'''', l''''), l21') -> MATCH0(Cons(x'''', l''''), l21', Cons(x'''', l''''))
APPEND(Cons(x''''', Cons(x''''''''', l''''''''')), l21'') -> MATCH0(Cons(x''''', Cons(x''''''''', l''''''''')), l21'', Cons(x''''', Cons(x''''''''', l''''''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 4
↳FwdInst
...
→DP Problem 7
↳Polynomial Ordering
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
APPEND(Cons(x''''', Cons(x''''''''', l''''''''')), l21'') -> MATCH0(Cons(x''''', Cons(x''''''''', l''''''''')), l21'', Cons(x''''', Cons(x''''''''', l''''''''')))
MATCH0(Cons(x', Cons(x'''''', l'''''')), l21'''', Cons(x', Cons(x'''''', l''''''))) -> APPEND(Cons(x'''''', l''''''), l21'''')
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
MATCH0(Cons(x', Cons(x'''''', l'''''')), l21'''', Cons(x', Cons(x'''''', l''''''))) -> APPEND(Cons(x'''''', l''''''), l21'''')
POL(MATCH_0(x1, x2, x3)) = x3 POL(Cons(x1, x2)) = 1 + x2 POL(APPEND(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 4
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
APPEND(Cons(x''''', Cons(x''''''''', l''''''''')), l21'') -> MATCH0(Cons(x''''', Cons(x''''''''', l''''''''')), l21'', Cons(x''''', Cons(x''''''''', l''''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Instantiation Transformation
→DP Problem 3
↳Nar
MATCH1(a4, l3, Cons(x, l')) -> PART(a4, l')
PART(a4, l3) -> MATCH1(a4, l3, l3)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH1(a4, l3, Cons(x, l')) -> PART(a4, l')
MATCH1(a4'', Cons(x', l''), Cons(x', l'')) -> PART(a4'', l'')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
MATCH1(a4'', Cons(x', l''), Cons(x', l'')) -> PART(a4'', l'')
PART(a4, l3) -> MATCH1(a4, l3, l3)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
PART(a4, l3) -> MATCH1(a4, l3, l3)
PART(a4', Cons(x'''', l''''')) -> MATCH1(a4', Cons(x'''', l'''''), Cons(x'''', l'''''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 9
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
PART(a4', Cons(x'''', l''''')) -> MATCH1(a4', Cons(x'''', l'''''), Cons(x'''', l'''''))
MATCH1(a4'', Cons(x', l''), Cons(x', l'')) -> PART(a4'', l'')
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH1(a4'', Cons(x', l''), Cons(x', l'')) -> PART(a4'', l'')
MATCH1(a4'''', Cons(x', Cons(x'''''', l''''''')), Cons(x', Cons(x'''''', l'''''''))) -> PART(a4'''', Cons(x'''''', l'''''''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 9
↳FwdInst
...
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
MATCH1(a4'''', Cons(x', Cons(x'''''', l''''''')), Cons(x', Cons(x'''''', l'''''''))) -> PART(a4'''', Cons(x'''''', l'''''''))
PART(a4', Cons(x'''', l''''')) -> MATCH1(a4', Cons(x'''', l'''''), Cons(x'''', l'''''))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
PART(a4', Cons(x'''', l''''')) -> MATCH1(a4', Cons(x'''', l'''''), Cons(x'''', l'''''))
PART(a4'', Cons(x''''', Cons(x''''''''', l''''''''''))) -> MATCH1(a4'', Cons(x''''', Cons(x''''''''', l'''''''''')), Cons(x''''', Cons(x''''''''', l'''''''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 9
↳FwdInst
...
→DP Problem 12
↳Polynomial Ordering
→DP Problem 3
↳Nar
PART(a4'', Cons(x''''', Cons(x''''''''', l''''''''''))) -> MATCH1(a4'', Cons(x''''', Cons(x''''''''', l'''''''''')), Cons(x''''', Cons(x''''''''', l'''''''''')))
MATCH1(a4'''', Cons(x', Cons(x'''''', l''''''')), Cons(x', Cons(x'''''', l'''''''))) -> PART(a4'''', Cons(x'''''', l'''''''))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
MATCH1(a4'''', Cons(x', Cons(x'''''', l''''''')), Cons(x', Cons(x'''''', l'''''''))) -> PART(a4'''', Cons(x'''''', l'''''''))
POL(PART(x1, x2)) = x2 POL(Cons(x1, x2)) = 1 + x2 POL(MATCH_1(x1, x2, x3)) = x3
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 9
↳FwdInst
...
→DP Problem 13
↳Dependency Graph
→DP Problem 3
↳Nar
PART(a4'', Cons(x''''', Cons(x''''''''', l''''''''''))) -> MATCH1(a4'', Cons(x''''', Cons(x''''''''', l'''''''''')), Cons(x''''', Cons(x''''''''', l'''''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Narrowing Transformation
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
MATCH4(l5, Cons(a, l')) -> MATCH5(a, l', l5, part(a, l'))
QUICK(l5) -> MATCH4(l5, l5)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH4(l5, Cons(a, l')) -> MATCH5(a, l', l5, part(a, l'))
MATCH4(l5, Cons(a', l'')) -> MATCH5(a', l'', l5, match1(a', l'', l''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Narrowing Transformation
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
MATCH4(l5, Cons(a', l'')) -> MATCH5(a', l'', l5, match1(a', l'', l''))
QUICK(l5) -> MATCH4(l5, l5)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH4(l5, Cons(a', l'')) -> MATCH5(a', l'', l5, match1(a', l'', l''))
MATCH4(l5, Cons(a'', Nil)) -> MATCH5(a'', Nil, l5, Pair(Nil, Nil))
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 15
↳Instantiation Transformation
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
MATCH4(l5, Cons(a'', Nil)) -> MATCH5(a'', Nil, l5, Pair(Nil, Nil))
QUICK(l5) -> MATCH4(l5, l5)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l1)
MATCH5(a', Nil, l5'', Pair(Nil, Nil)) -> QUICK(Nil)
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l1')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 16
↳Instantiation Transformation
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l1')
MATCH5(a', Nil, l5'', Pair(Nil, Nil)) -> QUICK(Nil)
MATCH4(l5, Cons(a'', Nil)) -> MATCH5(a'', Nil, l5, Pair(Nil, Nil))
QUICK(l5) -> MATCH4(l5, l5)
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
MATCH5(a, l', l5, Pair(l1, l2)) -> QUICK(l2)
MATCH5(a', Nil, l5'', Pair(Nil, Nil)) -> QUICK(Nil)
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l2')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 17
↳Forward Instantiation Transformation
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l2')
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
MATCH5(a', Nil, l5'', Pair(Nil, Nil)) -> QUICK(Nil)
MATCH5(a', Nil, l5'', Pair(Nil, Nil)) -> QUICK(Nil)
MATCH4(l5, Cons(a'', Nil)) -> MATCH5(a'', Nil, l5, Pair(Nil, Nil))
QUICK(l5) -> MATCH4(l5, l5)
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l1')
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
two new Dependency Pairs are created:
QUICK(l5) -> MATCH4(l5, l5)
QUICK(Cons(a'''', Nil)) -> MATCH4(Cons(a'''', Nil), Cons(a'''', Nil))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 18
↳Forward Instantiation Transformation
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l1')
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l2')
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l1')
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 19
↳Forward Instantiation Transformation
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l2')
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
one new Dependency Pair is created:
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', l2')) -> QUICK(l2')
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', Cons(a'''''', Cons(x''''', l''''''')))) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 20
↳Polynomial Ordering
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', Cons(a'''''', Cons(x''''', l''''''')))) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost
MATCH4(l5, Cons(a'', Cons(x', l'''))) -> MATCH5(a'', Cons(x', l'''), l5, match2(x', l''', a'', Cons(x', l'''), part(a'', l''')))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
test(x0, y) -> True
test(x0, y) -> False
POL(Nil) = 0 POL(MATCH_5(x1, x2, x3, x4)) = x4 POL(match_2(x1, x2, x3, x4, x5)) = 1 + x5 POL(False) = 0 POL(MATCH_4(x1, x2)) = x2 POL(Cons(x1, x2)) = 1 + x2 POL(match_3(x1, x2, x3, x4, x5, x6, x7)) = 1 + x1 + x2 POL(QUICK(x1)) = x1 POL(test(x1, x2)) = 0 POL(Pair(x1, x2)) = x1 + x2 POL(True) = 0 POL(part(x1, x2)) = x2 POL(match_1(x1, x2, x3)) = x3
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Nar
→DP Problem 14
↳Nar
...
→DP Problem 21
↳Dependency Graph
MATCH5(a', Cons(x''', l'''''), l5'', Pair(l1', Cons(a'''''', Cons(x''''', l''''''')))) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
QUICK(Cons(a'''', Cons(x''', l'''''))) -> MATCH4(Cons(a'''', Cons(x''', l''''')), Cons(a'''', Cons(x''', l''''')))
MATCH5(a', Cons(x''', l'''''), l5'', Pair(Cons(a'''''', Cons(x''''', l''''''')), l2')) -> QUICK(Cons(a'''''', Cons(x''''', l''''''')))
test(x0, y) -> True
test(x0, y) -> False
append(l12, l21) -> match0(l12, l21, l12)
match0(l12, l21, Nil) -> l21
match0(l12, l21, Cons(x, l)) -> Cons(x, append(l, l21))
part(a4, l3) -> match1(a4, l3, l3)
match1(a4, l3, Nil) -> Pair(Nil, Nil)
match1(a4, l3, Cons(x, l')) -> match2(x, l', a4, l3, part(a4, l'))
match2(x, l', a4, l3, Pair(l1, l2)) -> match3(l1, l2, x, l', a4, l3, test(a4, x))
match3(l1, l2, x, l', a4, l3, False) -> Pair(Cons(x, l1), l2)
match3(l1, l2, x, l', a4, l3, True) -> Pair(l1, Cons(x, l2))
quick(l5) -> match4(l5, l5)
match4(l5, Nil) -> Nil
match4(l5, Cons(a, l')) -> match5(a, l', l5, part(a, l'))
match5(a, l', l5, Pair(l1, l2)) -> append(quick(l1), Cons(a, quick(l2)))
innermost