Term Rewriting System R:
[N, M, NzN, NzM]
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(s(N), s(M)) -> +'(N, M)
*'(s(N), s(M)) -> +'(N, +(M, *(N, M)))
*'(s(N), s(M)) -> +'(M, *(N, M))
*'(s(N), s(M)) -> *'(N, M)
GT(NzN, 0) -> U4(isNzNat(NzN))
GT(NzN, 0) -> ISNZNAT(NzN)
GT(s(N), s(M)) -> GT(N, M)
LT(N, M) -> GT(M, N)
D(s(N), s(M)) -> D(N, M)
QUOT(N, NzM) -> U11(isNzNat(NzM), N, NzM)
QUOT(N, NzM) -> ISNZNAT(NzM)
QUOT(NzM, NzM) -> U01(isNzNat(NzM))
QUOT(NzM, NzM) -> ISNZNAT(NzM)
QUOT(N, NzM) -> U21(isNzNat(NzM), NzM, N)
U11(True, N, NzM) -> U1(gt(N, NzM), N, NzM)
U11(True, N, NzM) -> GT(N, NzM)
U1(True, N, NzM) -> QUOT(d(N, NzM), NzM)
U1(True, N, NzM) -> D(N, NzM)
U21(True, NzM, N) -> U2(gt(NzM, N))
U21(True, NzM, N) -> GT(NzM, N)
GCD(NzM, NzM) -> U02(isNzNat(NzM), NzM)
GCD(NzM, NzM) -> ISNZNAT(NzM)
GCD(NzN, NzM) -> U31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
GCD(NzN, NzM) -> ISNZNAT(NzN)
GCD(NzN, NzM) -> ISNZNAT(NzM)
U31(True, True, NzN, NzM) -> U3(gt(NzN, NzM), NzN, NzM)
U31(True, True, NzN, NzM) -> GT(NzN, NzM)
U3(True, NzN, NzM) -> GCD(d(NzN, NzM), NzM)
U3(True, NzN, NzM) -> D(NzN, NzM)

Furthermore, R contains six SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Nar
       →DP Problem 6
Remaining


Dependency Pair:

+'(s(N), s(M)) -> +'(N, M)


Rules:


p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)


Strategy:

innermost




The following dependency pair can be strictly oriented:

+'(s(N), s(M)) -> +'(N, M)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 7
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Nar
       →DP Problem 6
Remaining


Dependency Pair:


Rules:


p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Nar
       →DP Problem 6
Remaining


Dependency Pair:

GT(s(N), s(M)) -> GT(N, M)


Rules:


p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)


Strategy:

innermost




The following dependency pair can be strictly oriented:

GT(s(N), s(M)) -> GT(N, M)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
GT(x1, x2) -> GT(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 8
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Nar
       →DP Problem 6
Remaining


Dependency Pair:


Rules:


p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
Nar
       →DP Problem 6
Remaining


Dependency Pair:

D(s(N), s(M)) -> D(N, M)


Rules:


p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)


Strategy:

innermost




The following dependency pair can be strictly oriented:

D(s(N), s(M)) -> D(N, M)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
D(x1, x2) -> D(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 9
Dependency Graph
       →DP Problem 4
AFS
       →DP Problem 5
Nar
       →DP Problem 6
Remaining


Dependency Pair:


Rules:


p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 5
Nar
       →DP Problem 6
Remaining


Dependency Pair:

*'(s(N), s(M)) -> *'(N, M)


Rules:


p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)


Strategy:

innermost




The following dependency pair can be strictly oriented:

*'(s(N), s(M)) -> *'(N, M)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 10
Dependency Graph
       →DP Problem 5
Nar
       →DP Problem 6
Remaining


Dependency Pair:


Rules:


p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Narrowing Transformation
       →DP Problem 6
Remaining


Dependency Pairs:

U1(True, N, NzM) -> QUOT(d(N, NzM), NzM)
U11(True, N, NzM) -> U1(gt(N, NzM), N, NzM)
QUOT(N, NzM) -> U11(isNzNat(NzM), N, NzM)


Rules:


p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(N, NzM) -> U11(isNzNat(NzM), N, NzM)
two new Dependency Pairs are created:

QUOT(N, 0) -> U11(False, N, 0)
QUOT(N, s(N'')) -> U11(True, N, s(N''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Nar
           →DP Problem 11
Narrowing Transformation
       →DP Problem 6
Remaining


Dependency Pairs:

U11(True, N, NzM) -> U1(gt(N, NzM), N, NzM)
QUOT(N, s(N'')) -> U11(True, N, s(N''))
U1(True, N, NzM) -> QUOT(d(N, NzM), NzM)


Rules:


p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

U11(True, N, NzM) -> U1(gt(N, NzM), N, NzM)
three new Dependency Pairs are created:

U11(True, 0, NzM') -> U1(False, 0, NzM')
U11(True, N', 0) -> U1(u4(isNzNat(N')), N', 0)
U11(True, s(N''), s(M')) -> U1(gt(N'', M'), s(N''), s(M'))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Nar
           →DP Problem 11
Nar
             ...
               →DP Problem 12
Instantiation Transformation
       →DP Problem 6
Remaining


Dependency Pairs:

U1(True, N, NzM) -> QUOT(d(N, NzM), NzM)
U11(True, s(N''), s(M')) -> U1(gt(N'', M'), s(N''), s(M'))
QUOT(N, s(N'')) -> U11(True, N, s(N''))


Rules:


p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

U1(True, N, NzM) -> QUOT(d(N, NzM), NzM)
one new Dependency Pair is created:

U1(True, s(N''''), s(M''')) -> QUOT(d(s(N''''), s(M''')), s(M'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Nar
       →DP Problem 6
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Nar
       →DP Problem 6
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:37 minutes