R
↳Dependency Pair Analysis
+'(s(N), s(M)) -> +'(N, M)
*'(s(N), s(M)) -> +'(N, +(M, *(N, M)))
*'(s(N), s(M)) -> +'(M, *(N, M))
*'(s(N), s(M)) -> *'(N, M)
GT(NzN, 0) -> U4(isNzNat(NzN))
GT(NzN, 0) -> ISNZNAT(NzN)
GT(s(N), s(M)) -> GT(N, M)
LT(N, M) -> GT(M, N)
D(s(N), s(M)) -> D(N, M)
QUOT(N, NzM) -> U11(isNzNat(NzM), N, NzM)
QUOT(N, NzM) -> ISNZNAT(NzM)
QUOT(NzM, NzM) -> U01(isNzNat(NzM))
QUOT(NzM, NzM) -> ISNZNAT(NzM)
QUOT(N, NzM) -> U21(isNzNat(NzM), NzM, N)
U11(True, N, NzM) -> U1(gt(N, NzM), N, NzM)
U11(True, N, NzM) -> GT(N, NzM)
U1(True, N, NzM) -> QUOT(d(N, NzM), NzM)
U1(True, N, NzM) -> D(N, NzM)
U21(True, NzM, N) -> U2(gt(NzM, N))
U21(True, NzM, N) -> GT(NzM, N)
GCD(NzM, NzM) -> U02(isNzNat(NzM), NzM)
GCD(NzM, NzM) -> ISNZNAT(NzM)
GCD(NzN, NzM) -> U31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
GCD(NzN, NzM) -> ISNZNAT(NzN)
GCD(NzN, NzM) -> ISNZNAT(NzM)
U31(True, True, NzN, NzM) -> U3(gt(NzN, NzM), NzN, NzM)
U31(True, True, NzN, NzM) -> GT(NzN, NzM)
U3(True, NzN, NzM) -> GCD(d(NzN, NzM), NzM)
U3(True, NzN, NzM) -> D(NzN, NzM)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
+'(s(N), s(M)) -> +'(N, M)
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
+'(s(N), s(M)) -> +'(N, M)
+'(s(s(N'')), s(s(M''))) -> +'(s(N''), s(M''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
+'(s(s(N'')), s(s(M''))) -> +'(s(N''), s(M''))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
+'(s(s(N'')), s(s(M''))) -> +'(s(N''), s(M''))
+'(s(s(s(N''''))), s(s(s(M'''')))) -> +'(s(s(N'''')), s(s(M'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
+'(s(s(s(N''''))), s(s(s(M'''')))) -> +'(s(s(N'''')), s(s(M'''')))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
+'(s(s(s(N''''))), s(s(s(M'''')))) -> +'(s(s(N'''')), s(s(M'''')))
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
GT(s(N), s(M)) -> GT(N, M)
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
GT(s(N), s(M)) -> GT(N, M)
GT(s(s(N'')), s(s(M''))) -> GT(s(N''), s(M''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
GT(s(s(N'')), s(s(M''))) -> GT(s(N''), s(M''))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
GT(s(s(N'')), s(s(M''))) -> GT(s(N''), s(M''))
GT(s(s(s(N''''))), s(s(s(M'''')))) -> GT(s(s(N'''')), s(s(M'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 11
↳Argument Filtering and Ordering
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
GT(s(s(s(N''''))), s(s(s(M'''')))) -> GT(s(s(N'''')), s(s(M'''')))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
GT(s(s(s(N''''))), s(s(s(M'''')))) -> GT(s(s(N'''')), s(s(M'''')))
GT(x1, x2) -> GT(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
D(s(N), s(M)) -> D(N, M)
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
D(s(N), s(M)) -> D(N, M)
D(s(s(N'')), s(s(M''))) -> D(s(N''), s(M''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 13
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
D(s(s(N'')), s(s(M''))) -> D(s(N''), s(M''))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
D(s(s(N'')), s(s(M''))) -> D(s(N''), s(M''))
D(s(s(s(N''''))), s(s(s(M'''')))) -> D(s(s(N'''')), s(s(M'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 14
↳Argument Filtering and Ordering
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
D(s(s(s(N''''))), s(s(s(M'''')))) -> D(s(s(N'''')), s(s(M'''')))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
D(s(s(s(N''''))), s(s(s(M'''')))) -> D(s(s(N'''')), s(s(M'''')))
D(x1, x2) -> D(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 15
↳Dependency Graph
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
*'(s(N), s(M)) -> *'(N, M)
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
*'(s(N), s(M)) -> *'(N, M)
*'(s(s(N'')), s(s(M''))) -> *'(s(N''), s(M''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳Forward Instantiation Transformation
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
*'(s(s(N'')), s(s(M''))) -> *'(s(N''), s(M''))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
*'(s(s(N'')), s(s(M''))) -> *'(s(N''), s(M''))
*'(s(s(s(N''''))), s(s(s(M'''')))) -> *'(s(s(N'''')), s(s(M'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 17
↳Argument Filtering and Ordering
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
*'(s(s(s(N''''))), s(s(s(M'''')))) -> *'(s(s(N'''')), s(s(M'''')))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
*'(s(s(s(N''''))), s(s(s(M'''')))) -> *'(s(s(N'''')), s(s(M'''')))
*'(x1, x2) -> *'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 18
↳Dependency Graph
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U1(True, N, NzM) -> QUOT(d(N, NzM), NzM)
U11(True, N, NzM) -> U1(gt(N, NzM), N, NzM)
QUOT(N, NzM) -> U11(isNzNat(NzM), N, NzM)
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
two new Dependency Pairs are created:
QUOT(N, NzM) -> U11(isNzNat(NzM), N, NzM)
QUOT(N, 0) -> U11(False, N, 0)
QUOT(N, s(N'')) -> U11(True, N, s(N''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U11(True, N, NzM) -> U1(gt(N, NzM), N, NzM)
QUOT(N, s(N'')) -> U11(True, N, s(N''))
U1(True, N, NzM) -> QUOT(d(N, NzM), NzM)
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
three new Dependency Pairs are created:
U11(True, N, NzM) -> U1(gt(N, NzM), N, NzM)
U11(True, 0, NzM') -> U1(False, 0, NzM')
U11(True, N', 0) -> U1(u4(isNzNat(N')), N', 0)
U11(True, s(N''), s(M')) -> U1(gt(N'', M'), s(N''), s(M'))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 20
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U1(True, N, NzM) -> QUOT(d(N, NzM), NzM)
U11(True, s(N''), s(M')) -> U1(gt(N'', M'), s(N''), s(M'))
QUOT(N, s(N'')) -> U11(True, N, s(N''))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
three new Dependency Pairs are created:
U11(True, s(N''), s(M')) -> U1(gt(N'', M'), s(N''), s(M'))
U11(True, s(0), s(M'')) -> U1(False, s(0), s(M''))
U11(True, s(N'''), s(0)) -> U1(u4(isNzNat(N''')), s(N'''), s(0))
U11(True, s(s(N')), s(s(M''))) -> U1(gt(N', M''), s(s(N')), s(s(M'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 21
↳Instantiation Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(N')), s(s(M''))) -> U1(gt(N', M''), s(s(N')), s(s(M'')))
U11(True, s(N'''), s(0)) -> U1(u4(isNzNat(N''')), s(N'''), s(0))
QUOT(N, s(N'')) -> U11(True, N, s(N''))
U1(True, N, NzM) -> QUOT(d(N, NzM), NzM)
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
two new Dependency Pairs are created:
U1(True, N, NzM) -> QUOT(d(N, NzM), NzM)
U1(True, s(N'''''), s(0)) -> QUOT(d(s(N'''''), s(0)), s(0))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(s(s(N''')), s(s(M''''))), s(s(M'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 22
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U1(True, s(N'''''), s(0)) -> QUOT(d(s(N'''''), s(0)), s(0))
U11(True, s(N'''), s(0)) -> U1(u4(isNzNat(N''')), s(N'''), s(0))
QUOT(N, s(N'')) -> U11(True, N, s(N''))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(s(s(N''')), s(s(M''''))), s(s(M'''')))
U11(True, s(s(N')), s(s(M''))) -> U1(gt(N', M''), s(s(N')), s(s(M'')))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U1(True, s(N'''''), s(0)) -> QUOT(d(s(N'''''), s(0)), s(0))
U1(True, s(N'''''), s(0)) -> QUOT(d(N''''', 0), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 23
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(s(s(N''')), s(s(M''''))), s(s(M'''')))
U11(True, s(s(N')), s(s(M''))) -> U1(gt(N', M''), s(s(N')), s(s(M'')))
QUOT(N, s(N'')) -> U11(True, N, s(N''))
U1(True, s(N'''''), s(0)) -> QUOT(d(N''''', 0), s(0))
U11(True, s(N'''), s(0)) -> U1(u4(isNzNat(N''')), s(N'''), s(0))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(s(s(N''')), s(s(M''''))), s(s(M'''')))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(s(N'''), s(M'''')), s(s(M'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 24
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U1(True, s(N'''''), s(0)) -> QUOT(d(N''''', 0), s(0))
U11(True, s(N'''), s(0)) -> U1(u4(isNzNat(N''')), s(N'''), s(0))
QUOT(N, s(N'')) -> U11(True, N, s(N''))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(s(N'''), s(M'''')), s(s(M'''')))
U11(True, s(s(N')), s(s(M''))) -> U1(gt(N', M''), s(s(N')), s(s(M'')))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(s(N'''), s(M'''')), s(s(M'''')))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 25
↳Instantiation Transformation
→DP Problem 6
↳Remaining
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
U11(True, s(s(N')), s(s(M''))) -> U1(gt(N', M''), s(s(N')), s(s(M'')))
U11(True, s(N'''), s(0)) -> U1(u4(isNzNat(N''')), s(N'''), s(0))
QUOT(N, s(N'')) -> U11(True, N, s(N''))
U1(True, s(N'''''), s(0)) -> QUOT(d(N''''', 0), s(0))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
two new Dependency Pairs are created:
QUOT(N, s(N'')) -> U11(True, N, s(N''))
QUOT(N', s(0)) -> U11(True, N', s(0))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 26
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(N')), s(s(M''))) -> U1(gt(N', M''), s(s(N')), s(s(M'')))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
three new Dependency Pairs are created:
U11(True, s(s(N')), s(s(M''))) -> U1(gt(N', M''), s(s(N')), s(s(M'')))
U11(True, s(s(0)), s(s(M'''))) -> U1(False, s(s(0)), s(s(M''')))
U11(True, s(s(N'')), s(s(0))) -> U1(u4(isNzNat(N'')), s(s(N'')), s(s(0)))
U11(True, s(s(s(N''))), s(s(s(M')))) -> U1(gt(N'', M'), s(s(s(N''))), s(s(s(M'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 28
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(N''))), s(s(s(M')))) -> U1(gt(N'', M'), s(s(s(N''))), s(s(s(M'))))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
U11(True, s(s(N'')), s(s(0))) -> U1(u4(isNzNat(N'')), s(s(N'')), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
two new Dependency Pairs are created:
U11(True, s(s(N'')), s(s(0))) -> U1(u4(isNzNat(N'')), s(s(N'')), s(s(0)))
U11(True, s(s(0)), s(s(0))) -> U1(u4(False), s(s(0)), s(s(0)))
U11(True, s(s(s(N'))), s(s(0))) -> U1(u4(True), s(s(s(N'))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 30
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(N'))), s(s(0))) -> U1(u4(True), s(s(s(N'))), s(s(0)))
U11(True, s(s(0)), s(s(0))) -> U1(u4(False), s(s(0)), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
U11(True, s(s(s(N''))), s(s(s(M')))) -> U1(gt(N'', M'), s(s(s(N''))), s(s(s(M'))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U11(True, s(s(s(N'))), s(s(0))) -> U1(u4(True), s(s(s(N'))), s(s(0)))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 32
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
U11(True, s(s(s(N''))), s(s(s(M')))) -> U1(gt(N'', M'), s(s(s(N''))), s(s(s(M'))))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
U11(True, s(s(0)), s(s(0))) -> U1(u4(False), s(s(0)), s(s(0)))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
three new Dependency Pairs are created:
U11(True, s(s(s(N''))), s(s(s(M')))) -> U1(gt(N'', M'), s(s(s(N''))), s(s(s(M'))))
U11(True, s(s(s(0))), s(s(s(M'')))) -> U1(False, s(s(s(0))), s(s(s(M''))))
U11(True, s(s(s(N'''))), s(s(s(0)))) -> U1(u4(isNzNat(N''')), s(s(s(N'''))), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(s(M''))))) -> U1(gt(N', M''), s(s(s(s(N')))), s(s(s(s(M'')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 34
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(s(N')))), s(s(s(s(M''))))) -> U1(gt(N', M''), s(s(s(s(N')))), s(s(s(s(M'')))))
U11(True, s(s(s(N'''))), s(s(s(0)))) -> U1(u4(isNzNat(N''')), s(s(s(N'''))), s(s(s(0))))
U11(True, s(s(0)), s(s(0))) -> U1(u4(False), s(s(0)), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
no new Dependency Pairs are created.
U11(True, s(s(0)), s(s(0))) -> U1(u4(False), s(s(0)), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 36
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(N'''))), s(s(s(0)))) -> U1(u4(isNzNat(N''')), s(s(s(N'''))), s(s(s(0))))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
U11(True, s(s(s(s(N')))), s(s(s(s(M''))))) -> U1(gt(N', M''), s(s(s(s(N')))), s(s(s(s(M'')))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
two new Dependency Pairs are created:
U11(True, s(s(s(N'''))), s(s(s(0)))) -> U1(u4(isNzNat(N''')), s(s(s(N'''))), s(s(s(0))))
U11(True, s(s(s(0))), s(s(s(0)))) -> U1(u4(False), s(s(s(0))), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(u4(True), s(s(s(s(N')))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 38
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(u4(True), s(s(s(s(N')))), s(s(s(0))))
U11(True, s(s(s(0))), s(s(s(0)))) -> U1(u4(False), s(s(s(0))), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(s(M''))))) -> U1(gt(N', M''), s(s(s(s(N')))), s(s(s(s(M'')))))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(u4(True), s(s(s(s(N')))), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 39
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(s(M''))))) -> U1(gt(N', M''), s(s(s(s(N')))), s(s(s(s(M'')))))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
U11(True, s(s(s(0))), s(s(s(0)))) -> U1(u4(False), s(s(s(0))), s(s(s(0))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
three new Dependency Pairs are created:
U11(True, s(s(s(s(N')))), s(s(s(s(M''))))) -> U1(gt(N', M''), s(s(s(s(N')))), s(s(s(s(M'')))))
U11(True, s(s(s(s(0)))), s(s(s(s(M'''))))) -> U1(False, s(s(s(s(0)))), s(s(s(s(M''')))))
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 40
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
U11(True, s(s(s(0))), s(s(s(0)))) -> U1(u4(False), s(s(s(0))), s(s(s(0))))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
no new Dependency Pairs are created.
U11(True, s(s(s(0))), s(s(s(0)))) -> U1(u4(False), s(s(s(0))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 41
↳Instantiation Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
four new Dependency Pairs are created:
U1(True, s(s(N''')), s(s(M''''))) -> QUOT(d(N''', M''''), s(s(M'''')))
U1(True, s(s(s(N''''))), s(s(0))) -> QUOT(d(s(N''''), 0), s(s(0)))
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(s(N'''')), s(0)), s(s(s(0))))
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(s(s(N''''')), s(s(0))), s(s(s(s(0)))))
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(s(s(N'''''))), s(s(s(M''')))), s(s(s(s(s(M'''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 42
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(s(s(N'''''))), s(s(s(M''')))), s(s(s(s(s(M'''))))))
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(s(N'''')), s(0)), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
U1(True, s(s(s(N''''))), s(s(0))) -> QUOT(d(s(N''''), 0), s(s(0)))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(s(s(N''''')), s(s(0))), s(s(s(s(0)))))
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(s(N'''')), s(0)), s(s(s(0))))
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(N''''), 0), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 43
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(s(s(N''''')), s(s(0))), s(s(s(s(0)))))
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(N''''), 0), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
U1(True, s(s(s(N''''))), s(s(0))) -> QUOT(d(s(N''''), 0), s(s(0)))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(s(s(N'''''))), s(s(s(M''')))), s(s(s(s(s(M'''))))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(s(s(N''''')), s(s(0))), s(s(s(s(0)))))
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(s(N'''''), s(0)), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 44
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(s(N'''''), s(0)), s(s(s(s(0)))))
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(N''''), 0), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
U1(True, s(s(s(N''''))), s(s(0))) -> QUOT(d(s(N''''), 0), s(s(0)))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(s(s(N'''''))), s(s(s(M''')))), s(s(s(s(s(M'''))))))
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(s(s(N'''''))), s(s(s(M''')))), s(s(s(s(s(M'''))))))
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(s(N''''')), s(s(M'''))), s(s(s(s(s(M'''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 45
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(s(N''''')), s(s(M'''))), s(s(s(s(s(M'''))))))
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(N''''), 0), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
U1(True, s(s(s(N''''))), s(s(0))) -> QUOT(d(s(N''''), 0), s(s(0)))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(s(N'''''), s(0)), s(s(s(s(0)))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(s(N'''''), s(0)), s(s(s(s(0)))))
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(N''''', 0), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 46
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(N''''', 0), s(s(s(s(0)))))
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(N''''), 0), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
U1(True, s(s(s(N''''))), s(s(0))) -> QUOT(d(s(N''''), 0), s(s(0)))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(s(N''''')), s(s(M'''))), s(s(s(s(s(M'''))))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(s(N''''')), s(s(M'''))), s(s(s(s(s(M'''))))))
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(N'''''), s(M''')), s(s(s(s(s(M'''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 47
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(N''''', 0), s(s(s(s(0)))))
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(N''''), 0), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
U1(True, s(s(s(N''''))), s(s(0))) -> QUOT(d(s(N''''), 0), s(s(0)))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(N'''''), s(M''')), s(s(s(s(s(M'''))))))
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(s(N'''''), s(M''')), s(s(s(s(s(M'''))))))
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(N''''', M'''), s(s(s(s(s(M'''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 48
↳Instantiation Transformation
→DP Problem 6
↳Remaining
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(N''''', M'''), s(s(s(s(s(M'''))))))
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(N''''), 0), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
U1(True, s(s(s(N''''))), s(s(0))) -> QUOT(d(s(N''''), 0), s(s(0)))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(N''''', 0), s(s(s(s(0)))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
four new Dependency Pairs are created:
QUOT(N', s(s(M''''''))) -> U11(True, N', s(s(M'''''')))
QUOT(N'', s(s(0))) -> U11(True, N'', s(s(0)))
QUOT(N'', s(s(s(0)))) -> U11(True, N'', s(s(s(0))))
QUOT(N'', s(s(s(s(0))))) -> U11(True, N'', s(s(s(s(0)))))
QUOT(N'', s(s(s(s(s(M''''')))))) -> U11(True, N'', s(s(s(s(s(M'''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 49
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
QUOT(N'', s(s(s(s(s(M''''')))))) -> U11(True, N'', s(s(s(s(s(M'''''))))))
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(N''''', M'''), s(s(s(s(s(M'''))))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
QUOT(N'', s(s(s(s(s(M''''')))))) -> U11(True, N'', s(s(s(s(s(M'''''))))))
QUOT(s(s(s(s(s(N''''))))), s(s(s(s(s(M'''''')))))) -> U11(True, s(s(s(s(s(N''''))))), s(s(s(s(s(M''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining Obligation(s)
QUOT(s(s(s(s(s(N''''))))), s(s(s(s(s(M'''''')))))) -> U11(True, s(s(s(s(s(N''''))))), s(s(s(s(s(M''''''))))))
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(N''''', M'''), s(s(s(s(s(M'''))))))
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
U3(True, NzN, NzM) -> GCD(d(NzN, NzM), NzM)
U31(True, True, NzN, NzM) -> U3(gt(NzN, NzM), NzN, NzM)
GCD(NzN, NzM) -> U31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 50
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(N'', s(s(s(s(0))))) -> U11(True, N'', s(s(s(s(0)))))
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(N''''', 0), s(s(s(s(0)))))
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
QUOT(N'', s(s(s(s(0))))) -> U11(True, N'', s(s(s(s(0)))))
QUOT(s(s(s(s(N'''')))), s(s(s(s(0))))) -> U11(True, s(s(s(s(N'''')))), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 54
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(s(N'')))), s(s(s(s(0))))) -> U1(u4(isNzNat(N'')), s(s(s(s(N'')))), s(s(s(s(0)))))
QUOT(s(s(s(s(N'''')))), s(s(s(s(0))))) -> U11(True, s(s(s(s(N'''')))), s(s(s(s(0)))))
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(N''''', 0), s(s(s(s(0)))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U1(True, s(s(s(s(N''''')))), s(s(s(s(0))))) -> QUOT(d(N''''', 0), s(s(s(s(0)))))
U1(True, s(s(s(s(0)))), s(s(s(s(0))))) -> QUOT(0, s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 51
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
QUOT(N'', s(s(s(0)))) -> U11(True, N'', s(s(s(0))))
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(N''''), 0), s(s(s(0))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
QUOT(N'', s(s(s(0)))) -> U11(True, N'', s(s(s(0))))
QUOT(s(s(s(s(N'''')))), s(s(s(0)))) -> U11(True, s(s(s(s(N'''')))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 55
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(s(N'''')))), s(s(s(0)))) -> U11(True, s(s(s(s(N'''')))), s(s(s(0))))
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(N''''), 0), s(s(s(0))))
U11(True, s(s(s(s(N')))), s(s(s(0)))) -> U1(True, s(s(s(s(N')))), s(s(s(0))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
no new Dependency Pairs are created.
U1(True, s(s(s(s(N'''')))), s(s(s(0)))) -> QUOT(d(s(N''''), 0), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 52
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
QUOT(N'', s(s(0))) -> U11(True, N'', s(s(0)))
U1(True, s(s(s(N''''))), s(s(0))) -> QUOT(d(s(N''''), 0), s(s(0)))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
QUOT(N'', s(s(0))) -> U11(True, N'', s(s(0)))
QUOT(s(s(s(N''''))), s(s(0))) -> U11(True, s(s(s(N''''))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 56
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(N''''))), s(s(0))) -> U11(True, s(s(s(N''''))), s(s(0)))
U1(True, s(s(s(N''''))), s(s(0))) -> QUOT(d(s(N''''), 0), s(s(0)))
U11(True, s(s(s(N'))), s(s(0))) -> U1(True, s(s(s(N'))), s(s(0)))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
no new Dependency Pairs are created.
U1(True, s(s(s(N''''))), s(s(0))) -> QUOT(d(s(N''''), 0), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 27
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(N', s(0)) -> U11(True, N', s(0))
U1(True, s(N'''''), s(0)) -> QUOT(d(N''''', 0), s(0))
U11(True, s(N'''), s(0)) -> U1(u4(isNzNat(N''')), s(N'''), s(0))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
two new Dependency Pairs are created:
U11(True, s(N'''), s(0)) -> U1(u4(isNzNat(N''')), s(N'''), s(0))
U11(True, s(0), s(0)) -> U1(u4(False), s(0), s(0))
U11(True, s(s(N')), s(0)) -> U1(u4(True), s(s(N')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 29
↳Rewriting Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(N')), s(0)) -> U1(u4(True), s(s(N')), s(0))
U1(True, s(N'''''), s(0)) -> QUOT(d(N''''', 0), s(0))
U11(True, s(0), s(0)) -> U1(u4(False), s(0), s(0))
QUOT(N', s(0)) -> U11(True, N', s(0))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U11(True, s(s(N')), s(0)) -> U1(u4(True), s(s(N')), s(0))
U11(True, s(s(N')), s(0)) -> U1(True, s(s(N')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 31
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(N')), s(0)) -> U1(True, s(s(N')), s(0))
U11(True, s(0), s(0)) -> U1(u4(False), s(0), s(0))
QUOT(N', s(0)) -> U11(True, N', s(0))
U1(True, s(N'''''), s(0)) -> QUOT(d(N''''', 0), s(0))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
no new Dependency Pairs are created.
U11(True, s(0), s(0)) -> U1(u4(False), s(0), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 33
↳Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(N', s(0)) -> U11(True, N', s(0))
U1(True, s(N'''''), s(0)) -> QUOT(d(N''''', 0), s(0))
U11(True, s(s(N')), s(0)) -> U1(True, s(s(N')), s(0))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
U1(True, s(N'''''), s(0)) -> QUOT(d(N''''', 0), s(0))
U1(True, s(s(N''')), s(0)) -> QUOT(d(s(N'''), 0), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 35
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
U1(True, s(s(N''')), s(0)) -> QUOT(d(s(N'''), 0), s(0))
U11(True, s(s(N')), s(0)) -> U1(True, s(s(N')), s(0))
QUOT(N', s(0)) -> U11(True, N', s(0))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
one new Dependency Pair is created:
QUOT(N', s(0)) -> U11(True, N', s(0))
QUOT(s(s(N''')), s(0)) -> U11(True, s(s(N''')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 37
↳Narrowing Transformation
→DP Problem 6
↳Remaining
U11(True, s(s(N')), s(0)) -> U1(True, s(s(N')), s(0))
QUOT(s(s(N''')), s(0)) -> U11(True, s(s(N''')), s(0))
U1(True, s(s(N''')), s(0)) -> QUOT(d(s(N'''), 0), s(0))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
no new Dependency Pairs are created.
U1(True, s(s(N''')), s(0)) -> QUOT(d(s(N'''), 0), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining Obligation(s)
QUOT(s(s(s(s(s(N''''))))), s(s(s(s(s(M'''''')))))) -> U11(True, s(s(s(s(s(N''''))))), s(s(s(s(s(M''''''))))))
U1(True, s(s(s(s(s(N'''''))))), s(s(s(s(s(M''')))))) -> QUOT(d(N''''', M'''), s(s(s(s(s(M'''))))))
U11(True, s(s(s(s(s(N''))))), s(s(s(s(s(M')))))) -> U1(gt(N'', M'), s(s(s(s(s(N''))))), s(s(s(s(s(M'))))))
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost
U3(True, NzN, NzM) -> GCD(d(NzN, NzM), NzM)
U31(True, True, NzN, NzM) -> U3(gt(NzN, NzM), NzN, NzM)
GCD(NzN, NzM) -> U31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
p(s(N)) -> N
+(N, 0) -> N
+(s(N), s(M)) -> s(s(+(N, M)))
*(N, 0) -> 0
*(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
gt(0, M) -> False
gt(NzN, 0) -> u4(isNzNat(NzN))
gt(s(N), s(M)) -> gt(N, M)
u4(True) -> True
isNzNat(0) -> False
isNzNat(s(N)) -> True
lt(N, M) -> gt(M, N)
d(0, N) -> N
d(s(N), s(M)) -> d(N, M)
quot(N, NzM) -> u11(isNzNat(NzM), N, NzM)
quot(NzM, NzM) -> u01(isNzNat(NzM))
quot(N, NzM) -> u21(isNzNat(NzM), NzM, N)
u11(True, N, NzM) -> u1(gt(N, NzM), N, NzM)
u1(True, N, NzM) -> s(quot(d(N, NzM), NzM))
u01(True) -> s(0)
u21(True, NzM, N) -> u2(gt(NzM, N))
u2(True) -> 0
gcd(0, N) -> 0
gcd(NzM, NzM) -> u02(isNzNat(NzM), NzM)
gcd(NzN, NzM) -> u31(isNzNat(NzN), isNzNat(NzM), NzN, NzM)
u02(True, NzM) -> NzM
u31(True, True, NzN, NzM) -> u3(gt(NzN, NzM), NzN, NzM)
u3(True, NzN, NzM) -> gcd(d(NzN, NzM), NzM)
innermost