R
↳Dependency Pair Analysis
+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> 0'(+(+(x, y), 1(#)))
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
-'(0(x), 0(y)) -> 0'(-(x, y))
-'(0(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(1(x), 1(y)) -> 0'(-(x, y))
-'(1(x), 1(y)) -> -'(x, y)
GE(0(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> NOT(ge(y, x))
GE(0(x), 1(y)) -> GE(y, x)
GE(1(x), 0(y)) -> GE(x, y)
GE(1(x), 1(y)) -> GE(x, y)
GE(#, 0(x)) -> GE(#, x)
LOG(x) -> -'(log'(x), 1(#))
LOG(x) -> LOG'(x)
LOG'(1(x)) -> +'(log'(x), 1(#))
LOG'(1(x)) -> LOG'(x)
LOG'(0(x)) -> IF(ge(x, 1(#)), +(log'(x), 1(#)), #)
LOG'(0(x)) -> GE(x, 1(#))
LOG'(0(x)) -> +'(log'(x), 1(#))
LOG'(0(x)) -> LOG'(x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
0(#) -> #
POL(#) = 0 POL(0(x1)) = x1 POL(1(x1)) = 1 + x1 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = 1 + x1 + x2
+'(x1, x2) -> +'(x1, x2)
1(x1) -> 1(x1)
0(x1) -> 0(x1)
+(x1, x2) -> +(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
+'(0(x), 0(y)) -> +'(x, y)
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
0(#) -> #
POL(#) = 0 POL(0(x1)) = 1 + x1 POL(1(x1)) = 1 + x1 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = 1 + x1 + x2
+'(x1, x2) -> +'(x1, x2)
0(x1) -> 0(x1)
+(x1, x2) -> +(x1, x2)
1(x1) -> 1(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 6
↳AFS
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 6
↳AFS
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
+'(+(x, y), z) -> +'(y, z)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
+'(+(x, y), z) -> +'(y, z)
POL(+(x1, x2)) = 1 + x1 + x2 POL(+'(x1, x2)) = x1 + x2
+'(x1, x2) -> +'(x1, x2)
+(x1, x2) -> +(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 6
↳AFS
...
→DP Problem 9
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
0(#) -> #
POL(#) = 0 POL(-'(x1, x2)) = 1 + x1 + x2 POL(0(x1)) = 1 + x1 POL(1(x1)) = 1 + x1 POL(-(x1, x2)) = x1 + x2
-'(x1, x2) -> -'(x1, x2)
0(x1) -> 0(x1)
1(x1) -> 1(x1)
-(x1, x2) -> -(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 10
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
GE(#, 0(x)) -> GE(#, x)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
GE(#, 0(x)) -> GE(#, x)
POL(#) = 0 POL(0(x1)) = 1 + x1 POL(GE(x1, x2)) = x1 + x2
GE(x1, x2) -> GE(x1, x2)
0(x1) -> 0(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 11
↳Dependency Graph
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 5
↳AFS
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
POL(0(x1)) = x1 POL(GE(x1, x2)) = 1 + x1 + x2 POL(1(x1)) = 1 + x1
GE(x1, x2) -> GE(x1, x2)
1(x1) -> 1(x1)
0(x1) -> 0(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 12
↳Argument Filtering and Ordering
→DP Problem 5
↳AFS
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
GE(0(x), 0(y)) -> GE(x, y)
POL(0(x1)) = 1 + x1 POL(GE(x1, x2)) = x1 + x2
GE(x1, x2) -> GE(x1, x2)
0(x1) -> 0(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 12
↳AFS
...
→DP Problem 13
↳Dependency Graph
→DP Problem 5
↳AFS
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Argument Filtering and Ordering
LOG'(0(x)) -> LOG'(x)
LOG'(1(x)) -> LOG'(x)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
LOG'(0(x)) -> LOG'(x)
POL(LOG'(x1)) = x1 POL(0(x1)) = 1 + x1 POL(1(x1)) = x1
LOG'(x1) -> LOG'(x1)
0(x1) -> 0(x1)
1(x1) -> 1(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 14
↳Argument Filtering and Ordering
LOG'(1(x)) -> LOG'(x)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost
LOG'(1(x)) -> LOG'(x)
POL(LOG'(x1)) = x1 POL(1(x1)) = 1 + x1
LOG'(x1) -> LOG'(x1)
1(x1) -> 1(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 14
↳AFS
...
→DP Problem 15
↳Dependency Graph
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
innermost