R
↳Dependency Pair Analysis
+'(s(x), s(y)) -> +'(x, y)
*'(s(x), s(y)) -> +'(*(x, y), +(x, y))
*'(s(x), s(y)) -> *'(x, y)
*'(s(x), s(y)) -> +'(x, y)
SUM(cons(x, l)) -> +'(x, sum(l))
SUM(cons(x, l)) -> SUM(l)
PROD(cons(x, l)) -> *'(x, prod(l))
PROD(cons(x, l)) -> PROD(l)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
+'(s(x), s(y)) -> +'(x, y)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
+'(s(x), s(y)) -> +'(x, y)
POL(s(x1)) = 1 + x1 POL(+'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
*'(s(x), s(y)) -> *'(x, y)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
*'(s(x), s(y)) -> *'(x, y)
POL(*'(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
SUM(cons(x, l)) -> SUM(l)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
SUM(cons(x, l)) -> SUM(l)
POL(SUM(x1)) = x1 POL(cons(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 7
↳Dependency Graph
→DP Problem 4
↳Polo
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
PROD(cons(x, l)) -> PROD(l)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
PROD(cons(x, l)) -> PROD(l)
POL(cons(x1, x2)) = 1 + x2 POL(PROD(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 8
↳Dependency Graph
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost