Term Rewriting System R:
[x, y, l]
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

+'(s(x), s(y)) -> +'(x, y)
*'(s(x), s(y)) -> +'(*(x, y), +(x, y))
*'(s(x), s(y)) -> *'(x, y)
*'(s(x), s(y)) -> +'(x, y)
SUM(cons(x, l)) -> +'(x, sum(l))
SUM(cons(x, l)) -> SUM(l)
PROD(cons(x, l)) -> *'(x, prod(l))
PROD(cons(x, l)) -> PROD(l)

Furthermore, R contains four SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pair:

+'(s(x), s(y)) -> +'(x, y)

Rules:

+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))

Strategy:

innermost

The following dependency pair can be strictly oriented:

+'(s(x), s(y)) -> +'(x, y)

There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(s(x1)) =  1 + x1 POL(+'(x1, x2)) =  x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 5`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pair:

Rules:

+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polynomial Ordering`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pair:

*'(s(x), s(y)) -> *'(x, y)

Rules:

+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))

Strategy:

innermost

The following dependency pair can be strictly oriented:

*'(s(x), s(y)) -> *'(x, y)

There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(*'(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 6`
`             ↳Dependency Graph`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pair:

Rules:

+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polynomial Ordering`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pair:

SUM(cons(x, l)) -> SUM(l)

Rules:

+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))

Strategy:

innermost

The following dependency pair can be strictly oriented:

SUM(cons(x, l)) -> SUM(l)

There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(SUM(x1)) =  x1 POL(cons(x1, x2)) =  1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`           →DP Problem 7`
`             ↳Dependency Graph`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pair:

Rules:

+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polynomial Ordering`

Dependency Pair:

PROD(cons(x, l)) -> PROD(l)

Rules:

+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))

Strategy:

innermost

The following dependency pair can be strictly oriented:

PROD(cons(x, l)) -> PROD(l)

There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(cons(x1, x2)) =  1 + x2 POL(PROD(x1)) =  x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`           →DP Problem 8`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes